1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
use arrow_array::ArrayRef;
use bytes::Bytes;
use futures::{future::BoxFuture, FutureExt};
use log::trace;

use crate::{
    decoder::{PhysicalPageDecoder, PhysicalPageScheduler},
    encoder::{BufferEncoder, EncodedBuffer},
    EncodingsIo,
};

use lance_core::Result;

/// Scheduler for a simple encoding where buffers of fixed-size items are stored as-is on disk
#[derive(Debug, Clone, Copy)]
pub struct ValuePageScheduler {
    // TODO: do we really support values greater than 2^32 bytes per value?
    // I think we want to, in theory, but will need to test this case.
    bytes_per_value: u64,
    buffer_offset: u64,
}

impl ValuePageScheduler {
    pub fn new(bytes_per_value: u64, buffer_offset: u64) -> Self {
        Self {
            bytes_per_value,
            buffer_offset,
        }
    }
}

impl PhysicalPageScheduler for ValuePageScheduler {
    fn schedule_ranges(
        &self,
        ranges: &[std::ops::Range<u32>],
        scheduler: &dyn EncodingsIo,
    ) -> BoxFuture<'static, Result<Box<dyn PhysicalPageDecoder>>> {
        let mut min = u64::MAX;
        let mut max = 0;
        let byte_ranges = ranges
            .iter()
            .map(|range| {
                let start = self.buffer_offset + (range.start as u64 * self.bytes_per_value);
                let end = self.buffer_offset + (range.end as u64 * self.bytes_per_value);
                min = min.min(start);
                max = max.max(end);
                start..end
            })
            .collect::<Vec<_>>();

        trace!(
            "Scheduling I/O for {} ranges spread across byte range {}..{}",
            byte_ranges.len(),
            min,
            max
        );
        let bytes = scheduler.submit_request(byte_ranges);
        let bytes_per_value = self.bytes_per_value;

        async move {
            let bytes = bytes.await?;
            Ok(Box::new(ValuePageDecoder {
                bytes_per_value,
                data: bytes,
            }) as Box<dyn PhysicalPageDecoder>)
        }
        .boxed()
    }
}

struct ValuePageDecoder {
    bytes_per_value: u64,
    data: Vec<Bytes>,
}

impl PhysicalPageDecoder for ValuePageDecoder {
    fn update_capacity(&self, _rows_to_skip: u32, num_rows: u32, buffers: &mut [(u64, bool)]) {
        buffers[0].0 = self.bytes_per_value * num_rows as u64;
        buffers[0].1 = true;
    }

    fn decode_into(&self, rows_to_skip: u32, num_rows: u32, dest_buffers: &mut [bytes::BytesMut]) {
        let mut bytes_to_skip = rows_to_skip as u64 * self.bytes_per_value;
        let mut bytes_to_take = num_rows as u64 * self.bytes_per_value;

        let dest = &mut dest_buffers[0];

        debug_assert!(dest.capacity() as u64 >= bytes_to_take);

        for buf in &self.data {
            let buf_len = buf.len() as u64;
            if bytes_to_skip > buf_len {
                bytes_to_skip -= buf_len;
            } else {
                let bytes_to_take_here = (buf_len - bytes_to_skip).min(bytes_to_take);
                bytes_to_take -= bytes_to_take_here;
                let start = bytes_to_skip as usize;
                let end = start + bytes_to_take_here as usize;
                dest.extend_from_slice(&buf.slice(start..end));
                bytes_to_skip = 0;
            }
        }
    }
}

#[derive(Debug, Default)]
pub struct ValueEncoder {}

impl BufferEncoder for ValueEncoder {
    fn encode(&self, arrays: &[ArrayRef]) -> Result<EncodedBuffer> {
        let parts = arrays
            .iter()
            .map(|arr| arr.to_data().buffers()[0].clone())
            .collect::<Vec<_>>();
        Ok(EncodedBuffer {
            is_data: true,
            parts,
        })
    }
}

// public tests module because we share the PRIMITIVE_TYPES constant with fixed_size_list
#[cfg(test)]
pub(crate) mod tests {

    use arrow_schema::{DataType, Field, IntervalUnit, TimeUnit};

    use crate::encodings::physical::basic::BasicEncoder;
    use crate::testing::check_round_trip_array_encoding;

    pub const PRIMITIVE_TYPES: &[DataType] = &[
        DataType::Date32,
        DataType::Date64,
        DataType::Int8,
        DataType::Int16,
        DataType::Int32,
        DataType::Int64,
        DataType::UInt8,
        DataType::UInt16,
        DataType::UInt32,
        DataType::UInt64,
        DataType::Float16,
        DataType::Float32,
        DataType::Float64,
        DataType::Decimal128(10, 10),
        DataType::Decimal256(10, 10),
        DataType::Timestamp(TimeUnit::Nanosecond, None),
        DataType::Time32(TimeUnit::Second),
        DataType::Time64(TimeUnit::Nanosecond),
        DataType::Duration(TimeUnit::Second),
        DataType::Interval(IntervalUnit::DayTime),
    ];

    #[test_log::test(tokio::test)]
    async fn test_value_primitive() {
        for data_type in PRIMITIVE_TYPES {
            let encoder = BasicEncoder::new(0);
            let field = Field::new("", data_type.clone(), false);

            check_round_trip_array_encoding(encoder, field).await;
        }
    }
}