1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use std::ops::Range;

use arrow_array::{cast::AsArray, ArrayRef};
use arrow_buffer::BooleanBufferBuilder;
use arrow_schema::DataType;
use bytes::{Bytes, BytesMut};

use futures::{future::BoxFuture, FutureExt};
use lance_core::Result;
use log::trace;

use crate::{
    decoder::{PhysicalPageDecoder, PhysicalPageScheduler},
    encoder::{BufferEncoder, EncodedBuffer},
    EncodingsIo,
};

/// A physical scheduler for bitmap buffers encoded densely as 1 bit per value
/// with bit-endianess (e.g. what Arrow uses for validity bitmaps and boolean arrays)
///
/// This decoder decodes from one buffer of disk data into one buffer of memory data
#[derive(Debug, Clone, Copy)]
pub struct DenseBitmapScheduler {
    buffer_offset: u64,
}

impl DenseBitmapScheduler {
    pub fn new(buffer_offset: u64) -> Self {
        Self { buffer_offset }
    }
}

impl PhysicalPageScheduler for DenseBitmapScheduler {
    fn schedule_ranges(
        &self,
        ranges: &[Range<u32>],
        scheduler: &dyn EncodingsIo,
    ) -> BoxFuture<'static, Result<Box<dyn PhysicalPageDecoder>>> {
        let mut min = u64::MAX;
        let mut max = 0;
        let chunk_reqs = ranges
            .iter()
            .map(|range| {
                debug_assert_ne!(range.start, range.end);
                let start = self.buffer_offset + range.start as u64 / 8;
                let bit_offset = range.start % 8;
                let end = self.buffer_offset + range.end.div_ceil(8) as u64;
                let byte_range = start..end;
                min = min.min(start);
                max = max.max(end);
                (byte_range, bit_offset, range.end - range.start)
            })
            .collect::<Vec<_>>();

        let byte_ranges = chunk_reqs
            .iter()
            .map(|(range, _, _)| range.clone())
            .collect::<Vec<_>>();
        trace!(
            "Scheduling I/O for {} ranges across byte range {}..{}",
            byte_ranges.len(),
            min,
            max
        );
        let bytes = scheduler.submit_request(byte_ranges);

        async move {
            let bytes = bytes.await?;
            let chunks = bytes
                .into_iter()
                .zip(chunk_reqs)
                .map(|(bytes, (_, bit_offset, length))| BitmapData {
                    data: bytes,
                    bit_offset,
                    length,
                })
                .collect::<Vec<_>>();
            Ok(Box::new(BitmapDecoder { chunks }) as Box<dyn PhysicalPageDecoder>)
        }
        .boxed()
    }
}

struct BitmapData {
    data: Bytes,
    bit_offset: u32,
    length: u32,
}

struct BitmapDecoder {
    chunks: Vec<BitmapData>,
}

impl PhysicalPageDecoder for BitmapDecoder {
    fn update_capacity(&self, _rows_to_skip: u32, num_rows: u32, buffers: &mut [(u64, bool)]) {
        buffers[0].0 = arrow_buffer::bit_util::ceil(num_rows as usize, 8) as u64;
        // This decoder has no concept of "optional" buffers
    }

    fn decode_into(&self, rows_to_skip: u32, num_rows: u32, dest_buffers: &mut [BytesMut]) {
        let mut rows_to_skip = rows_to_skip;

        let mut dest_builder = BooleanBufferBuilder::new(num_rows as usize);

        let mut rows_remaining = num_rows;
        for chunk in &self.chunks {
            if chunk.length <= rows_to_skip {
                rows_to_skip -= chunk.length;
            } else {
                let start = rows_to_skip + chunk.bit_offset;
                let num_vals_to_take = rows_remaining.min(chunk.length);
                let end = start + num_vals_to_take;
                dest_builder.append_packed_range(start as usize..end as usize, &chunk.data);
                rows_to_skip = 0;
                rows_remaining -= num_vals_to_take;
            }
        }

        let bool_buffer = dest_builder.finish().into_inner();
        unsafe { dest_buffers[0].set_len(bool_buffer.len()) }
        // TODO: This requires an extra copy.  First we copy the data from the read buffer(s)
        // into dest_builder (one copy is inevitable).  Then we copy the data from dest_builder
        // into dest_buffers.  This second copy could be avoided (e.g. BooleanBufferBuilder
        // has a new_from_buffer but that requires MutableBuffer and we can't easily get there
        // from BytesMut [or can we?])
        //
        // Worst case, we vendor our own copy of BooleanBufferBuilder based on BytesMut.  We could
        // also use MutableBuffer ourselves instead of BytesMut but arrow-rs claims MutableBuffer may
        // be deprecated in the future (though that discussion seems to have died)

        // TODO: Will this work at the boundaries?  If we have to skip 3 bits for example then the first
        // bytes of bool_buffer.as_slice will be 000XXXXX and if we copy it on top of YYY00000 then the YYY
        // will be clobbered.
        //
        // It's a moot point at the moment since we don't support page bridging
        dest_buffers[0].copy_from_slice(bool_buffer.as_slice());
    }
}

// Encoder for writing boolean arrays as dense bitmaps
#[derive(Debug, Default)]
pub struct BitmapEncoder {}

impl BufferEncoder for BitmapEncoder {
    fn encode(&self, arrays: &[ArrayRef]) -> Result<EncodedBuffer> {
        debug_assert!(arrays
            .iter()
            .all(|arr| *arr.data_type() == DataType::Boolean));
        let num_rows: u32 = arrays.iter().map(|arr| arr.len() as u32).sum();
        // Empty pages don't make sense, this should be prevented before we
        // get here
        debug_assert_ne!(num_rows, 0);
        // We can't just write the inner value buffers one after the other because
        // bitmaps can have junk padding at the end (e.g. a boolean array with 12
        // values will be 2 bytes but the last four bits of the second byte are
        // garbage).  So we go ahead and pay the cost of a copy (we could avoid this
        // if we really needed to, at the expense of more complicated code and a slightly
        // larger encoded size but writer cost generally doesn't matter as much as reader cost)
        let mut builder = BooleanBufferBuilder::new(num_rows as usize);
        for arr in arrays {
            let bool_arr = arr.as_boolean();
            builder.append_buffer(bool_arr.values());
        }
        let buffer = builder.finish().into_inner();
        let parts = vec![buffer];
        let buffer = EncodedBuffer {
            is_data: true,
            parts,
        };
        Ok(buffer)
    }
}

#[cfg(test)]
mod tests {
    use arrow_schema::{DataType, Field};
    use bytes::{Bytes, BytesMut};

    use crate::decoder::PhysicalPageDecoder;
    use crate::encodings::physical::basic::BasicEncoder;
    use crate::encodings::physical::bitmap::BitmapData;
    use crate::testing::check_round_trip_array_encoding;

    use super::BitmapDecoder;

    #[test_log::test(tokio::test)]
    async fn test_bitmap_boolean() {
        let encoder = BasicEncoder::new(0);
        let field = Field::new("", DataType::Boolean, false);

        check_round_trip_array_encoding(encoder, field).await;
    }

    #[test]
    fn test_bitmap_decoder_edge_cases() {
        // Regression for a case where the row skip and the bit offset
        // require us to read from the second Bytes instead of the first
        let decoder = BitmapDecoder {
            chunks: vec![
                BitmapData {
                    data: Bytes::from_static(&[0b11111111]),
                    bit_offset: 4,
                    length: 4,
                },
                BitmapData {
                    data: Bytes::from_static(&[0b00000000]),
                    bit_offset: 4,
                    length: 4,
                },
            ],
        };
        let mut dest = vec![BytesMut::with_capacity(1)];
        decoder.decode_into(5, 1, &mut dest);
    }
}