lance_datafusion/
udf.rs

1// SPDX-License-Identifier: Apache-2.0
2// SPDX-FileCopyrightText: Copyright The Lance Authors
3
4//! Datafusion user defined functions
5
6use arrow_array::{Array, ArrayRef, BooleanArray, StringArray};
7use arrow_schema::DataType;
8use datafusion::logical_expr::{create_udf, ScalarUDF, Volatility};
9use datafusion::prelude::SessionContext;
10use datafusion_functions::utils::make_scalar_function;
11use std::sync::{Arc, LazyLock};
12
13pub mod json;
14
15/// Register UDF functions to datafusion context.
16pub fn register_functions(ctx: &SessionContext) {
17    ctx.register_udf(CONTAINS_TOKENS_UDF.clone());
18    // JSON functions
19    ctx.register_udf(json::json_extract_udf());
20    ctx.register_udf(json::json_extract_with_type_udf());
21    ctx.register_udf(json::json_exists_udf());
22    ctx.register_udf(json::json_get_udf());
23    ctx.register_udf(json::json_get_string_udf());
24    ctx.register_udf(json::json_get_int_udf());
25    ctx.register_udf(json::json_get_float_udf());
26    ctx.register_udf(json::json_get_bool_udf());
27    ctx.register_udf(json::json_array_contains_udf());
28    ctx.register_udf(json::json_array_length_udf());
29}
30
31/// This method checks whether a string contains all specified tokens. The tokens are separated by
32/// punctuations and white spaces.
33///
34/// The functionality is equivalent to FTS MatchQuery (with fuzziness disabled, Operator::And,
35/// and using the simple tokenizer). If FTS index exists and suites the query, it will be used to
36/// optimize the query.
37///
38/// Usage
39/// * Use `contains_tokens` in sql.
40/// ```rust,ignore
41/// let sql = "SELECT * FROM table WHERE contains_tokens(text_col, 'fox jumps dog')";
42/// let mut ds = Dataset::open(&ds_path).await?;
43/// let ctx = SessionContext::new();
44/// ctx.register_table(
45///     "table",
46///     Arc::new(LanceTableProvider::new(dataset, false, false)),
47/// )?;
48/// register_functions(&ctx);
49/// let df = ctx.sql(sql).await?;
50/// ```
51fn contains_tokens() -> ScalarUDF {
52    let function = Arc::new(make_scalar_function(
53        |args: &[ArrayRef]| {
54            let column = args[0].as_any().downcast_ref::<StringArray>().ok_or(
55                datafusion::error::DataFusionError::Execution(
56                    "First argument of contains_tokens can't be cast to string".to_string(),
57                ),
58            )?;
59            let scalar_str = args[1].as_any().downcast_ref::<StringArray>().ok_or(
60                datafusion::error::DataFusionError::Execution(
61                    "Second argument of contains_tokens can't be cast to string".to_string(),
62                ),
63            )?;
64
65            let tokens: Option<Vec<&str>> = match scalar_str.len() {
66                0 => None,
67                _ => Some(collect_tokens(scalar_str.value(0))),
68            };
69
70            let result = column.iter().map(|text| {
71                text.map(|text| {
72                    let text_tokens = collect_tokens(text);
73                    if let Some(tokens) = &tokens {
74                        tokens.len()
75                            == tokens
76                                .iter()
77                                .filter(|token| text_tokens.contains(*token))
78                                .count()
79                    } else {
80                        true
81                    }
82                })
83            });
84
85            Ok(Arc::new(BooleanArray::from_iter(result)) as ArrayRef)
86        },
87        vec![],
88    ));
89
90    create_udf(
91        "contains_tokens",
92        vec![DataType::Utf8, DataType::Utf8],
93        DataType::Boolean,
94        Volatility::Immutable,
95        function,
96    )
97}
98
99/// Split tokens separated by punctuations and white spaces.
100fn collect_tokens(text: &str) -> Vec<&str> {
101    text.split(|c: char| !c.is_alphanumeric())
102        .filter(|word| !word.is_empty())
103        .collect()
104}
105
106pub static CONTAINS_TOKENS_UDF: LazyLock<ScalarUDF> = LazyLock::new(contains_tokens);
107
108#[cfg(test)]
109mod tests {
110    use crate::udf::CONTAINS_TOKENS_UDF;
111    use arrow_array::{Array, BooleanArray, StringArray};
112    use arrow_schema::{DataType, Field};
113    use datafusion::logical_expr::ScalarFunctionArgs;
114    use datafusion::physical_plan::ColumnarValue;
115    use std::sync::Arc;
116
117    #[tokio::test]
118    async fn test_contains_tokens() {
119        // Prepare arguments
120        let contains_tokens = CONTAINS_TOKENS_UDF.clone();
121        let text_col = Arc::new(StringArray::from(vec![
122            "a cat catch a fish",
123            "a fish catch a cat",
124            "a white cat catch a big fish",
125            "cat catchup fish",
126            "cat fish catch",
127        ]));
128        let token = Arc::new(StringArray::from(vec![
129            " cat catch fish.",
130            " cat catch fish.",
131            " cat catch fish.",
132            " cat catch fish.",
133            " cat catch fish.",
134        ]));
135
136        let args = vec![ColumnarValue::Array(text_col), ColumnarValue::Array(token)];
137        let arg_fields = vec![
138            Arc::new(Field::new("text_col".to_string(), DataType::Utf8, false)),
139            Arc::new(Field::new("token".to_string(), DataType::Utf8, false)),
140        ];
141
142        let args = ScalarFunctionArgs {
143            args,
144            arg_fields,
145            number_rows: 5,
146            return_field: Arc::new(Field::new("res".to_string(), DataType::Boolean, false)),
147        };
148
149        // Invoke contains_tokens manually
150        let values = contains_tokens.invoke_with_args(args).unwrap();
151
152        if let ColumnarValue::Array(array) = values {
153            let array = array.as_any().downcast_ref::<BooleanArray>().unwrap();
154            assert_eq!(
155                array.clone(),
156                BooleanArray::from(vec![true, true, true, false, true])
157            );
158        } else {
159            panic!("Expected an Array but got {:?}", values);
160        }
161    }
162}