1use std::borrow::Cow;
7use std::collections::{BTreeSet, VecDeque};
8use std::sync::Arc;
9
10use crate::expr::safe_coerce_scalar;
11use crate::logical_expr::{coerce_filter_type_to_boolean, get_as_string_scalar_opt, resolve_expr};
12use crate::sql::{parse_sql_expr, parse_sql_filter};
13use arrow::compute::CastOptions;
14use arrow_array::ListArray;
15use arrow_buffer::OffsetBuffer;
16use arrow_schema::{DataType as ArrowDataType, Field, SchemaRef, TimeUnit};
17use arrow_select::concat::concat;
18use datafusion::common::tree_node::{TreeNode, TreeNodeRecursion, TreeNodeVisitor};
19use datafusion::common::DFSchema;
20use datafusion::config::ConfigOptions;
21use datafusion::error::Result as DFResult;
22use datafusion::execution::config::SessionConfig;
23use datafusion::execution::context::SessionState;
24use datafusion::execution::runtime_env::RuntimeEnvBuilder;
25use datafusion::execution::session_state::SessionStateBuilder;
26use datafusion::logical_expr::expr::ScalarFunction;
27use datafusion::logical_expr::planner::{ExprPlanner, PlannerResult, RawFieldAccessExpr};
28use datafusion::logical_expr::{
29 AggregateUDF, ColumnarValue, GetFieldAccess, ScalarFunctionArgs, ScalarUDF, ScalarUDFImpl,
30 Signature, Volatility, WindowUDF,
31};
32use datafusion::optimizer::simplify_expressions::SimplifyContext;
33use datafusion::sql::planner::{ContextProvider, ParserOptions, PlannerContext, SqlToRel};
34use datafusion::sql::sqlparser::ast::{
35 AccessExpr, Array as SQLArray, BinaryOperator, DataType as SQLDataType, ExactNumberInfo,
36 Expr as SQLExpr, Function, FunctionArg, FunctionArgExpr, FunctionArguments, Ident,
37 ObjectNamePart, Subscript, TimezoneInfo, UnaryOperator, Value, ValueWithSpan,
38};
39use datafusion::{
40 common::Column,
41 logical_expr::{col, Between, BinaryExpr, Like, Operator},
42 physical_expr::execution_props::ExecutionProps,
43 physical_plan::PhysicalExpr,
44 prelude::Expr,
45 scalar::ScalarValue,
46};
47use datafusion_functions::core::getfield::GetFieldFunc;
48use lance_arrow::cast::cast_with_options;
49use lance_core::datatypes::Schema;
50use lance_core::error::LanceOptionExt;
51use snafu::location;
52
53use lance_core::{Error, Result};
54
55#[derive(Debug, Clone)]
56struct CastListF16Udf {
57 signature: Signature,
58}
59
60impl CastListF16Udf {
61 pub fn new() -> Self {
62 Self {
63 signature: Signature::any(1, Volatility::Immutable),
64 }
65 }
66}
67
68impl ScalarUDFImpl for CastListF16Udf {
69 fn as_any(&self) -> &dyn std::any::Any {
70 self
71 }
72
73 fn name(&self) -> &str {
74 "_cast_list_f16"
75 }
76
77 fn signature(&self) -> &Signature {
78 &self.signature
79 }
80
81 fn return_type(&self, arg_types: &[ArrowDataType]) -> DFResult<ArrowDataType> {
82 let input = &arg_types[0];
83 match input {
84 ArrowDataType::FixedSizeList(field, size) => {
85 if field.data_type() != &ArrowDataType::Float32
86 && field.data_type() != &ArrowDataType::Float16
87 {
88 return Err(datafusion::error::DataFusionError::Execution(
89 "cast_list_f16 only supports list of float32 or float16".to_string(),
90 ));
91 }
92 Ok(ArrowDataType::FixedSizeList(
93 Arc::new(Field::new(
94 field.name(),
95 ArrowDataType::Float16,
96 field.is_nullable(),
97 )),
98 *size,
99 ))
100 }
101 ArrowDataType::List(field) => {
102 if field.data_type() != &ArrowDataType::Float32
103 && field.data_type() != &ArrowDataType::Float16
104 {
105 return Err(datafusion::error::DataFusionError::Execution(
106 "cast_list_f16 only supports list of float32 or float16".to_string(),
107 ));
108 }
109 Ok(ArrowDataType::List(Arc::new(Field::new(
110 field.name(),
111 ArrowDataType::Float16,
112 field.is_nullable(),
113 ))))
114 }
115 _ => Err(datafusion::error::DataFusionError::Execution(
116 "cast_list_f16 only supports FixedSizeList/List arguments".to_string(),
117 )),
118 }
119 }
120
121 fn invoke_with_args(&self, func_args: ScalarFunctionArgs) -> DFResult<ColumnarValue> {
122 let ColumnarValue::Array(arr) = &func_args.args[0] else {
123 return Err(datafusion::error::DataFusionError::Execution(
124 "cast_list_f16 only supports array arguments".to_string(),
125 ));
126 };
127
128 let to_type = match arr.data_type() {
129 ArrowDataType::FixedSizeList(field, size) => ArrowDataType::FixedSizeList(
130 Arc::new(Field::new(
131 field.name(),
132 ArrowDataType::Float16,
133 field.is_nullable(),
134 )),
135 *size,
136 ),
137 ArrowDataType::List(field) => ArrowDataType::List(Arc::new(Field::new(
138 field.name(),
139 ArrowDataType::Float16,
140 field.is_nullable(),
141 ))),
142 _ => {
143 return Err(datafusion::error::DataFusionError::Execution(
144 "cast_list_f16 only supports array arguments".to_string(),
145 ));
146 }
147 };
148
149 let res = cast_with_options(arr.as_ref(), &to_type, &CastOptions::default())?;
150 Ok(ColumnarValue::Array(res))
151 }
152}
153
154struct LanceContextProvider {
156 options: datafusion::config::ConfigOptions,
157 state: SessionState,
158 expr_planners: Vec<Arc<dyn ExprPlanner>>,
159}
160
161impl Default for LanceContextProvider {
162 fn default() -> Self {
163 let config = SessionConfig::new();
164 let runtime = RuntimeEnvBuilder::new().build_arc().unwrap();
165 let mut state_builder = SessionStateBuilder::new()
166 .with_config(config)
167 .with_runtime_env(runtime)
168 .with_default_features();
169
170 let expr_planners = state_builder.expr_planners().as_ref().unwrap().clone();
175
176 Self {
177 options: ConfigOptions::default(),
178 state: state_builder.build(),
179 expr_planners,
180 }
181 }
182}
183
184impl ContextProvider for LanceContextProvider {
185 fn get_table_source(
186 &self,
187 name: datafusion::sql::TableReference,
188 ) -> DFResult<Arc<dyn datafusion::logical_expr::TableSource>> {
189 Err(datafusion::error::DataFusionError::NotImplemented(format!(
190 "Attempt to reference inner table {} not supported",
191 name
192 )))
193 }
194
195 fn get_aggregate_meta(&self, name: &str) -> Option<Arc<AggregateUDF>> {
196 self.state.aggregate_functions().get(name).cloned()
197 }
198
199 fn get_window_meta(&self, name: &str) -> Option<Arc<WindowUDF>> {
200 self.state.window_functions().get(name).cloned()
201 }
202
203 fn get_function_meta(&self, f: &str) -> Option<Arc<ScalarUDF>> {
204 match f {
205 "_cast_list_f16" => Some(Arc::new(ScalarUDF::new_from_impl(CastListF16Udf::new()))),
208 _ => self.state.scalar_functions().get(f).cloned(),
209 }
210 }
211
212 fn get_variable_type(&self, _: &[String]) -> Option<ArrowDataType> {
213 None
215 }
216
217 fn options(&self) -> &datafusion::config::ConfigOptions {
218 &self.options
219 }
220
221 fn udf_names(&self) -> Vec<String> {
222 self.state.scalar_functions().keys().cloned().collect()
223 }
224
225 fn udaf_names(&self) -> Vec<String> {
226 self.state.aggregate_functions().keys().cloned().collect()
227 }
228
229 fn udwf_names(&self) -> Vec<String> {
230 self.state.window_functions().keys().cloned().collect()
231 }
232
233 fn get_expr_planners(&self) -> &[Arc<dyn ExprPlanner>] {
234 &self.expr_planners
235 }
236}
237
238pub struct Planner {
239 schema: SchemaRef,
240 context_provider: LanceContextProvider,
241 enable_relations: bool,
242}
243
244impl Planner {
245 pub fn new(schema: SchemaRef) -> Self {
246 Self {
247 schema,
248 context_provider: LanceContextProvider::default(),
249 enable_relations: false,
250 }
251 }
252
253 pub fn with_enable_relations(mut self, enable_relations: bool) -> Self {
259 self.enable_relations = enable_relations;
260 self
261 }
262
263 fn column(&self, idents: &[Ident]) -> Expr {
264 fn handle_remaining_idents(expr: &mut Expr, idents: &[Ident]) {
265 for ident in idents {
266 *expr = Expr::ScalarFunction(ScalarFunction {
267 args: vec![
268 std::mem::take(expr),
269 Expr::Literal(ScalarValue::Utf8(Some(ident.value.clone())), None),
270 ],
271 func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
272 });
273 }
274 }
275
276 if self.enable_relations && idents.len() > 1 {
277 let relation = &idents[0].value;
279 let column_name = &idents[1].value;
280 let column = Expr::Column(Column::new(Some(relation.clone()), column_name.clone()));
281 let mut result = column;
282 handle_remaining_idents(&mut result, &idents[2..]);
283 result
284 } else {
285 let mut column = col(&idents[0].value);
287 handle_remaining_idents(&mut column, &idents[1..]);
288 column
289 }
290 }
291
292 fn binary_op(&self, op: &BinaryOperator) -> Result<Operator> {
293 Ok(match op {
294 BinaryOperator::Plus => Operator::Plus,
295 BinaryOperator::Minus => Operator::Minus,
296 BinaryOperator::Multiply => Operator::Multiply,
297 BinaryOperator::Divide => Operator::Divide,
298 BinaryOperator::Modulo => Operator::Modulo,
299 BinaryOperator::StringConcat => Operator::StringConcat,
300 BinaryOperator::Gt => Operator::Gt,
301 BinaryOperator::Lt => Operator::Lt,
302 BinaryOperator::GtEq => Operator::GtEq,
303 BinaryOperator::LtEq => Operator::LtEq,
304 BinaryOperator::Eq => Operator::Eq,
305 BinaryOperator::NotEq => Operator::NotEq,
306 BinaryOperator::And => Operator::And,
307 BinaryOperator::Or => Operator::Or,
308 _ => {
309 return Err(Error::invalid_input(
310 format!("Operator {op} is not supported"),
311 location!(),
312 ));
313 }
314 })
315 }
316
317 fn binary_expr(&self, left: &SQLExpr, op: &BinaryOperator, right: &SQLExpr) -> Result<Expr> {
318 Ok(Expr::BinaryExpr(BinaryExpr::new(
319 Box::new(self.parse_sql_expr(left)?),
320 self.binary_op(op)?,
321 Box::new(self.parse_sql_expr(right)?),
322 )))
323 }
324
325 fn unary_expr(&self, op: &UnaryOperator, expr: &SQLExpr) -> Result<Expr> {
326 Ok(match op {
327 UnaryOperator::Not | UnaryOperator::PGBitwiseNot => {
328 Expr::Not(Box::new(self.parse_sql_expr(expr)?))
329 }
330
331 UnaryOperator::Minus => {
332 use datafusion::logical_expr::lit;
333 match expr {
334 SQLExpr::Value(ValueWithSpan { value: Value::Number(n, _), ..}) => match n.parse::<i64>() {
335 Ok(n) => lit(-n),
336 Err(_) => lit(-n
337 .parse::<f64>()
338 .map_err(|_e| {
339 Error::invalid_input(
340 format!("negative operator can be only applied to integer and float operands, got: {n}"),
341 location!(),
342 )
343 })?),
344 },
345 _ => {
346 Expr::Negative(Box::new(self.parse_sql_expr(expr)?))
347 }
348 }
349 }
350
351 _ => {
352 return Err(Error::invalid_input(
353 format!("Unary operator '{:?}' is not supported", op),
354 location!(),
355 ));
356 }
357 })
358 }
359
360 fn number(&self, value: &str, negative: bool) -> Result<Expr> {
362 use datafusion::logical_expr::lit;
363 let value: Cow<str> = if negative {
364 Cow::Owned(format!("-{}", value))
365 } else {
366 Cow::Borrowed(value)
367 };
368 if let Ok(n) = value.parse::<i64>() {
369 Ok(lit(n))
370 } else {
371 value.parse::<f64>().map(lit).map_err(|_| {
372 Error::invalid_input(
373 format!("'{value}' is not supported number value."),
374 location!(),
375 )
376 })
377 }
378 }
379
380 fn value(&self, value: &Value) -> Result<Expr> {
381 Ok(match value {
382 Value::Number(v, _) => self.number(v.as_str(), false)?,
383 Value::SingleQuotedString(s) => Expr::Literal(ScalarValue::Utf8(Some(s.clone())), None),
384 Value::HexStringLiteral(hsl) => {
385 Expr::Literal(ScalarValue::Binary(Self::try_decode_hex_literal(hsl)), None)
386 }
387 Value::DoubleQuotedString(s) => Expr::Literal(ScalarValue::Utf8(Some(s.clone())), None),
388 Value::Boolean(v) => Expr::Literal(ScalarValue::Boolean(Some(*v)), None),
389 Value::Null => Expr::Literal(ScalarValue::Null, None),
390 _ => todo!(),
391 })
392 }
393
394 fn parse_function_args(&self, func_args: &FunctionArg) -> Result<Expr> {
395 match func_args {
396 FunctionArg::Unnamed(FunctionArgExpr::Expr(expr)) => self.parse_sql_expr(expr),
397 _ => Err(Error::invalid_input(
398 format!("Unsupported function args: {:?}", func_args),
399 location!(),
400 )),
401 }
402 }
403
404 fn legacy_parse_function(&self, func: &Function) -> Result<Expr> {
411 match &func.args {
412 FunctionArguments::List(args) => {
413 if func.name.0.len() != 1 {
414 return Err(Error::invalid_input(
415 format!("Function name must have 1 part, got: {:?}", func.name.0),
416 location!(),
417 ));
418 }
419 Ok(Expr::IsNotNull(Box::new(
420 self.parse_function_args(&args.args[0])?,
421 )))
422 }
423 _ => Err(Error::invalid_input(
424 format!("Unsupported function args: {:?}", &func.args),
425 location!(),
426 )),
427 }
428 }
429
430 fn parse_function(&self, function: SQLExpr) -> Result<Expr> {
431 if let SQLExpr::Function(function) = &function {
432 if let Some(ObjectNamePart::Identifier(name)) = &function.name.0.first() {
433 if &name.value == "is_valid" {
434 return self.legacy_parse_function(function);
435 }
436 }
437 }
438 let sql_to_rel = SqlToRel::new_with_options(
439 &self.context_provider,
440 ParserOptions {
441 parse_float_as_decimal: false,
442 enable_ident_normalization: false,
443 support_varchar_with_length: false,
444 enable_options_value_normalization: false,
445 collect_spans: false,
446 map_varchar_to_utf8view: false,
447 },
448 );
449
450 let mut planner_context = PlannerContext::default();
451 let schema = DFSchema::try_from(self.schema.as_ref().clone())?;
452 sql_to_rel
453 .sql_to_expr(function, &schema, &mut planner_context)
454 .map_err(|e| Error::invalid_input(format!("Error parsing function: {e}"), location!()))
455 }
456
457 fn parse_type(&self, data_type: &SQLDataType) -> Result<ArrowDataType> {
458 const SUPPORTED_TYPES: [&str; 13] = [
459 "int [unsigned]",
460 "tinyint [unsigned]",
461 "smallint [unsigned]",
462 "bigint [unsigned]",
463 "float",
464 "double",
465 "string",
466 "binary",
467 "date",
468 "timestamp(precision)",
469 "datetime(precision)",
470 "decimal(precision,scale)",
471 "boolean",
472 ];
473 match data_type {
474 SQLDataType::String(_) => Ok(ArrowDataType::Utf8),
475 SQLDataType::Binary(_) => Ok(ArrowDataType::Binary),
476 SQLDataType::Float(_) => Ok(ArrowDataType::Float32),
477 SQLDataType::Double(_) => Ok(ArrowDataType::Float64),
478 SQLDataType::Boolean => Ok(ArrowDataType::Boolean),
479 SQLDataType::TinyInt(_) => Ok(ArrowDataType::Int8),
480 SQLDataType::SmallInt(_) => Ok(ArrowDataType::Int16),
481 SQLDataType::Int(_) | SQLDataType::Integer(_) => Ok(ArrowDataType::Int32),
482 SQLDataType::BigInt(_) => Ok(ArrowDataType::Int64),
483 SQLDataType::TinyIntUnsigned(_) => Ok(ArrowDataType::UInt8),
484 SQLDataType::SmallIntUnsigned(_) => Ok(ArrowDataType::UInt16),
485 SQLDataType::IntUnsigned(_) | SQLDataType::IntegerUnsigned(_) => {
486 Ok(ArrowDataType::UInt32)
487 }
488 SQLDataType::BigIntUnsigned(_) => Ok(ArrowDataType::UInt64),
489 SQLDataType::Date => Ok(ArrowDataType::Date32),
490 SQLDataType::Timestamp(resolution, tz) => {
491 match tz {
492 TimezoneInfo::None => {}
493 _ => {
494 return Err(Error::invalid_input(
495 "Timezone not supported in timestamp".to_string(),
496 location!(),
497 ));
498 }
499 };
500 let time_unit = match resolution {
501 None => TimeUnit::Microsecond,
503 Some(0) => TimeUnit::Second,
504 Some(3) => TimeUnit::Millisecond,
505 Some(6) => TimeUnit::Microsecond,
506 Some(9) => TimeUnit::Nanosecond,
507 _ => {
508 return Err(Error::invalid_input(
509 format!("Unsupported datetime resolution: {:?}", resolution),
510 location!(),
511 ));
512 }
513 };
514 Ok(ArrowDataType::Timestamp(time_unit, None))
515 }
516 SQLDataType::Datetime(resolution) => {
517 let time_unit = match resolution {
518 None => TimeUnit::Microsecond,
519 Some(0) => TimeUnit::Second,
520 Some(3) => TimeUnit::Millisecond,
521 Some(6) => TimeUnit::Microsecond,
522 Some(9) => TimeUnit::Nanosecond,
523 _ => {
524 return Err(Error::invalid_input(
525 format!("Unsupported datetime resolution: {:?}", resolution),
526 location!(),
527 ));
528 }
529 };
530 Ok(ArrowDataType::Timestamp(time_unit, None))
531 }
532 SQLDataType::Decimal(number_info) => match number_info {
533 ExactNumberInfo::PrecisionAndScale(precision, scale) => {
534 Ok(ArrowDataType::Decimal128(*precision as u8, *scale as i8))
535 }
536 _ => Err(Error::invalid_input(
537 format!(
538 "Must provide precision and scale for decimal: {:?}",
539 number_info
540 ),
541 location!(),
542 )),
543 },
544 _ => Err(Error::invalid_input(
545 format!(
546 "Unsupported data type: {:?}. Supported types: {:?}",
547 data_type, SUPPORTED_TYPES
548 ),
549 location!(),
550 )),
551 }
552 }
553
554 fn plan_field_access(&self, mut field_access_expr: RawFieldAccessExpr) -> Result<Expr> {
555 let df_schema = DFSchema::try_from(self.schema.as_ref().clone())?;
556 for planner in self.context_provider.get_expr_planners() {
557 match planner.plan_field_access(field_access_expr, &df_schema)? {
558 PlannerResult::Planned(expr) => return Ok(expr),
559 PlannerResult::Original(expr) => {
560 field_access_expr = expr;
561 }
562 }
563 }
564 Err(Error::invalid_input(
565 "Field access could not be planned",
566 location!(),
567 ))
568 }
569
570 fn parse_sql_expr(&self, expr: &SQLExpr) -> Result<Expr> {
571 match expr {
572 SQLExpr::Identifier(id) => {
573 if id.quote_style == Some('"') {
576 Ok(Expr::Literal(
577 ScalarValue::Utf8(Some(id.value.clone())),
578 None,
579 ))
580 } else if id.quote_style == Some('`') {
583 Ok(Expr::Column(Column::from_name(id.value.clone())))
584 } else {
585 Ok(self.column(vec![id.clone()].as_slice()))
586 }
587 }
588 SQLExpr::CompoundIdentifier(ids) => Ok(self.column(ids.as_slice())),
589 SQLExpr::BinaryOp { left, op, right } => self.binary_expr(left, op, right),
590 SQLExpr::UnaryOp { op, expr } => self.unary_expr(op, expr),
591 SQLExpr::Value(value) => self.value(&value.value),
592 SQLExpr::Array(SQLArray { elem, .. }) => {
593 let mut values = vec![];
594
595 let array_literal_error = |pos: usize, value: &_| {
596 Err(Error::invalid_input(
597 format!(
598 "Expected a literal value in array, instead got {} at position {}",
599 value, pos
600 ),
601 location!(),
602 ))
603 };
604
605 for (pos, expr) in elem.iter().enumerate() {
606 match expr {
607 SQLExpr::Value(value) => {
608 if let Expr::Literal(value, _) = self.value(&value.value)? {
609 values.push(value);
610 } else {
611 return array_literal_error(pos, expr);
612 }
613 }
614 SQLExpr::UnaryOp {
615 op: UnaryOperator::Minus,
616 expr,
617 } => {
618 if let SQLExpr::Value(ValueWithSpan {
619 value: Value::Number(number, _),
620 ..
621 }) = expr.as_ref()
622 {
623 if let Expr::Literal(value, _) = self.number(number, true)? {
624 values.push(value);
625 } else {
626 return array_literal_error(pos, expr);
627 }
628 } else {
629 return array_literal_error(pos, expr);
630 }
631 }
632 _ => {
633 return array_literal_error(pos, expr);
634 }
635 }
636 }
637
638 let field = if !values.is_empty() {
639 let data_type = values[0].data_type();
640
641 for value in &mut values {
642 if value.data_type() != data_type {
643 *value = safe_coerce_scalar(value, &data_type).ok_or_else(|| Error::invalid_input(
644 format!("Array expressions must have a consistent datatype. Expected: {}, got: {}", data_type, value.data_type()),
645 location!()
646 ))?;
647 }
648 }
649 Field::new("item", data_type, true)
650 } else {
651 Field::new("item", ArrowDataType::Null, true)
652 };
653
654 let values = values
655 .into_iter()
656 .map(|v| v.to_array().map_err(Error::from))
657 .collect::<Result<Vec<_>>>()?;
658 let array_refs = values.iter().map(|v| v.as_ref()).collect::<Vec<_>>();
659 let values = concat(&array_refs)?;
660 let values = ListArray::try_new(
661 field.into(),
662 OffsetBuffer::from_lengths([values.len()]),
663 values,
664 None,
665 )?;
666
667 Ok(Expr::Literal(ScalarValue::List(Arc::new(values)), None))
668 }
669 SQLExpr::TypedString { data_type, value } => {
671 let value = value.clone().into_string().expect_ok()?;
672 Ok(Expr::Cast(datafusion::logical_expr::Cast {
673 expr: Box::new(Expr::Literal(ScalarValue::Utf8(Some(value)), None)),
674 data_type: self.parse_type(data_type)?,
675 }))
676 }
677 SQLExpr::IsFalse(expr) => Ok(Expr::IsFalse(Box::new(self.parse_sql_expr(expr)?))),
678 SQLExpr::IsNotFalse(expr) => Ok(Expr::IsNotFalse(Box::new(self.parse_sql_expr(expr)?))),
679 SQLExpr::IsTrue(expr) => Ok(Expr::IsTrue(Box::new(self.parse_sql_expr(expr)?))),
680 SQLExpr::IsNotTrue(expr) => Ok(Expr::IsNotTrue(Box::new(self.parse_sql_expr(expr)?))),
681 SQLExpr::IsNull(expr) => Ok(Expr::IsNull(Box::new(self.parse_sql_expr(expr)?))),
682 SQLExpr::IsNotNull(expr) => Ok(Expr::IsNotNull(Box::new(self.parse_sql_expr(expr)?))),
683 SQLExpr::InList {
684 expr,
685 list,
686 negated,
687 } => {
688 let value_expr = self.parse_sql_expr(expr)?;
689 let list_exprs = list
690 .iter()
691 .map(|e| self.parse_sql_expr(e))
692 .collect::<Result<Vec<_>>>()?;
693 Ok(value_expr.in_list(list_exprs, *negated))
694 }
695 SQLExpr::Nested(inner) => self.parse_sql_expr(inner.as_ref()),
696 SQLExpr::Function(_) => self.parse_function(expr.clone()),
697 SQLExpr::ILike {
698 negated,
699 expr,
700 pattern,
701 escape_char,
702 any: _,
703 } => Ok(Expr::Like(Like::new(
704 *negated,
705 Box::new(self.parse_sql_expr(expr)?),
706 Box::new(self.parse_sql_expr(pattern)?),
707 escape_char.as_ref().and_then(|c| c.chars().next()),
708 true,
709 ))),
710 SQLExpr::Like {
711 negated,
712 expr,
713 pattern,
714 escape_char,
715 any: _,
716 } => Ok(Expr::Like(Like::new(
717 *negated,
718 Box::new(self.parse_sql_expr(expr)?),
719 Box::new(self.parse_sql_expr(pattern)?),
720 escape_char.as_ref().and_then(|c| c.chars().next()),
721 false,
722 ))),
723 SQLExpr::Cast {
724 expr, data_type, ..
725 } => Ok(Expr::Cast(datafusion::logical_expr::Cast {
726 expr: Box::new(self.parse_sql_expr(expr)?),
727 data_type: self.parse_type(data_type)?,
728 })),
729 SQLExpr::JsonAccess { .. } => Err(Error::invalid_input(
730 "JSON access is not supported",
731 location!(),
732 )),
733 SQLExpr::CompoundFieldAccess { root, access_chain } => {
734 let mut expr = self.parse_sql_expr(root)?;
735
736 for access in access_chain {
737 let field_access = match access {
738 AccessExpr::Dot(SQLExpr::Identifier(Ident { value: s, .. }))
740 | AccessExpr::Subscript(Subscript::Index {
741 index:
742 SQLExpr::Value(ValueWithSpan {
743 value:
744 Value::SingleQuotedString(s) | Value::DoubleQuotedString(s),
745 ..
746 }),
747 }) => GetFieldAccess::NamedStructField {
748 name: ScalarValue::from(s.as_str()),
749 },
750 AccessExpr::Subscript(Subscript::Index { index }) => {
751 let key = Box::new(self.parse_sql_expr(index)?);
752 GetFieldAccess::ListIndex { key }
753 }
754 AccessExpr::Subscript(Subscript::Slice { .. }) => {
755 return Err(Error::invalid_input(
756 "Slice subscript is not supported",
757 location!(),
758 ));
759 }
760 _ => {
761 return Err(Error::invalid_input(
764 "Only dot notation or index access is supported for field access",
765 location!(),
766 ));
767 }
768 };
769
770 let field_access_expr = RawFieldAccessExpr { expr, field_access };
771 expr = self.plan_field_access(field_access_expr)?;
772 }
773
774 Ok(expr)
775 }
776 SQLExpr::Between {
777 expr,
778 negated,
779 low,
780 high,
781 } => {
782 let expr = self.parse_sql_expr(expr)?;
784 let low = self.parse_sql_expr(low)?;
785 let high = self.parse_sql_expr(high)?;
786
787 let between = Expr::Between(Between::new(
788 Box::new(expr),
789 *negated,
790 Box::new(low),
791 Box::new(high),
792 ));
793 Ok(between)
794 }
795 _ => Err(Error::invalid_input(
796 format!("Expression '{expr}' is not supported SQL in lance"),
797 location!(),
798 )),
799 }
800 }
801
802 pub fn parse_filter(&self, filter: &str) -> Result<Expr> {
807 let ast_expr = parse_sql_filter(filter)?;
809 let expr = self.parse_sql_expr(&ast_expr)?;
810 let schema = Schema::try_from(self.schema.as_ref())?;
811 let resolved = resolve_expr(&expr, &schema).map_err(|e| {
812 Error::invalid_input(
813 format!("Error resolving filter expression {filter}: {e}"),
814 location!(),
815 )
816 })?;
817
818 Ok(coerce_filter_type_to_boolean(resolved))
819 }
820
821 pub fn parse_expr(&self, expr: &str) -> Result<Expr> {
826 let ast_expr = parse_sql_expr(expr)?;
827 let expr = self.parse_sql_expr(&ast_expr)?;
828 let schema = Schema::try_from(self.schema.as_ref())?;
829 let resolved = resolve_expr(&expr, &schema)?;
830 Ok(resolved)
831 }
832
833 fn try_decode_hex_literal(s: &str) -> Option<Vec<u8>> {
839 let hex_bytes = s.as_bytes();
840 let mut decoded_bytes = Vec::with_capacity(hex_bytes.len().div_ceil(2));
841
842 let start_idx = hex_bytes.len() % 2;
843 if start_idx > 0 {
844 decoded_bytes.push(Self::try_decode_hex_char(hex_bytes[0])?);
846 }
847
848 for i in (start_idx..hex_bytes.len()).step_by(2) {
849 let high = Self::try_decode_hex_char(hex_bytes[i])?;
850 let low = Self::try_decode_hex_char(hex_bytes[i + 1])?;
851 decoded_bytes.push((high << 4) | low);
852 }
853
854 Some(decoded_bytes)
855 }
856
857 const fn try_decode_hex_char(c: u8) -> Option<u8> {
861 match c {
862 b'A'..=b'F' => Some(c - b'A' + 10),
863 b'a'..=b'f' => Some(c - b'a' + 10),
864 b'0'..=b'9' => Some(c - b'0'),
865 _ => None,
866 }
867 }
868
869 pub fn optimize_expr(&self, expr: Expr) -> Result<Expr> {
871 let df_schema = Arc::new(DFSchema::try_from(self.schema.as_ref().clone())?);
872
873 let props = ExecutionProps::default();
876 let simplify_context = SimplifyContext::new(&props).with_schema(df_schema.clone());
877 let simplifier =
878 datafusion::optimizer::simplify_expressions::ExprSimplifier::new(simplify_context);
879
880 let expr = simplifier.simplify(expr)?;
881 let expr = simplifier.coerce(expr, &df_schema)?;
882
883 Ok(expr)
884 }
885
886 pub fn create_physical_expr(&self, expr: &Expr) -> Result<Arc<dyn PhysicalExpr>> {
888 let df_schema = Arc::new(DFSchema::try_from(self.schema.as_ref().clone())?);
889 Ok(datafusion::physical_expr::create_physical_expr(
890 expr,
891 df_schema.as_ref(),
892 &Default::default(),
893 )?)
894 }
895
896 pub fn column_names_in_expr(expr: &Expr) -> Vec<String> {
903 let mut visitor = ColumnCapturingVisitor {
904 current_path: VecDeque::new(),
905 columns: BTreeSet::new(),
906 };
907 expr.visit(&mut visitor).unwrap();
908 visitor.columns.into_iter().collect()
909 }
910}
911
912struct ColumnCapturingVisitor {
913 current_path: VecDeque<String>,
915 columns: BTreeSet<String>,
916}
917
918impl TreeNodeVisitor<'_> for ColumnCapturingVisitor {
919 type Node = Expr;
920
921 fn f_down(&mut self, node: &Self::Node) -> DFResult<TreeNodeRecursion> {
922 match node {
923 Expr::Column(Column { name, .. }) => {
924 let mut path = name.clone();
925 for part in self.current_path.drain(..) {
926 path.push('.');
927 path.push_str(&part);
928 }
929 self.columns.insert(path);
930 self.current_path.clear();
931 }
932 Expr::ScalarFunction(udf) => {
933 if udf.name() == GetFieldFunc::default().name() {
934 if let Some(name) = get_as_string_scalar_opt(&udf.args[1]) {
935 self.current_path.push_front(name.to_string())
936 } else {
937 self.current_path.clear();
938 }
939 } else {
940 self.current_path.clear();
941 }
942 }
943 _ => {
944 self.current_path.clear();
945 }
946 }
947
948 Ok(TreeNodeRecursion::Continue)
949 }
950}
951
952#[cfg(test)]
953mod tests {
954
955 use crate::logical_expr::ExprExt;
956
957 use super::*;
958
959 use arrow::datatypes::Float64Type;
960 use arrow_array::{
961 ArrayRef, BooleanArray, Float32Array, Int32Array, Int64Array, RecordBatch, StringArray,
962 StructArray, TimestampMicrosecondArray, TimestampMillisecondArray,
963 TimestampNanosecondArray, TimestampSecondArray,
964 };
965 use arrow_schema::{DataType, Fields, Schema};
966 use datafusion::{
967 logical_expr::{lit, Cast},
968 prelude::{array_element, get_field},
969 };
970 use datafusion_functions::core::expr_ext::FieldAccessor;
971
972 #[test]
973 fn test_parse_filter_simple() {
974 let schema = Arc::new(Schema::new(vec![
975 Field::new("i", DataType::Int32, false),
976 Field::new("s", DataType::Utf8, true),
977 Field::new(
978 "st",
979 DataType::Struct(Fields::from(vec![
980 Field::new("x", DataType::Float32, false),
981 Field::new("y", DataType::Float32, false),
982 ])),
983 true,
984 ),
985 ]));
986
987 let planner = Planner::new(schema.clone());
988
989 let expected = col("i")
990 .gt(lit(3_i32))
991 .and(col("st").field_newstyle("x").lt_eq(lit(5.0_f32)))
992 .and(
993 col("s")
994 .eq(lit("str-4"))
995 .or(col("s").in_list(vec![lit("str-4"), lit("str-5")], false)),
996 );
997
998 let expr = planner
1000 .parse_filter("i > 3 AND st.x <= 5.0 AND (s == 'str-4' OR s in ('str-4', 'str-5'))")
1001 .unwrap();
1002 assert_eq!(expr, expected);
1003
1004 let expr = planner
1006 .parse_filter("i > 3 AND st.x <= 5.0 AND (s = 'str-4' OR s in ('str-4', 'str-5'))")
1007 .unwrap();
1008
1009 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1010
1011 let batch = RecordBatch::try_new(
1012 schema,
1013 vec![
1014 Arc::new(Int32Array::from_iter_values(0..10)) as ArrayRef,
1015 Arc::new(StringArray::from_iter_values(
1016 (0..10).map(|v| format!("str-{}", v)),
1017 )),
1018 Arc::new(StructArray::from(vec![
1019 (
1020 Arc::new(Field::new("x", DataType::Float32, false)),
1021 Arc::new(Float32Array::from_iter_values((0..10).map(|v| v as f32)))
1022 as ArrayRef,
1023 ),
1024 (
1025 Arc::new(Field::new("y", DataType::Float32, false)),
1026 Arc::new(Float32Array::from_iter_values(
1027 (0..10).map(|v| (v * 10) as f32),
1028 )),
1029 ),
1030 ])),
1031 ],
1032 )
1033 .unwrap();
1034 let predicates = physical_expr.evaluate(&batch).unwrap();
1035 assert_eq!(
1036 predicates.into_array(0).unwrap().as_ref(),
1037 &BooleanArray::from(vec![
1038 false, false, false, false, true, true, false, false, false, false
1039 ])
1040 );
1041 }
1042
1043 #[test]
1044 fn test_nested_col_refs() {
1045 let schema = Arc::new(Schema::new(vec![
1046 Field::new("s0", DataType::Utf8, true),
1047 Field::new(
1048 "st",
1049 DataType::Struct(Fields::from(vec![
1050 Field::new("s1", DataType::Utf8, true),
1051 Field::new(
1052 "st",
1053 DataType::Struct(Fields::from(vec![Field::new(
1054 "s2",
1055 DataType::Utf8,
1056 true,
1057 )])),
1058 true,
1059 ),
1060 ])),
1061 true,
1062 ),
1063 ]));
1064
1065 let planner = Planner::new(schema);
1066
1067 fn assert_column_eq(planner: &Planner, expr: &str, expected: &Expr) {
1068 let expr = planner.parse_filter(&format!("{expr} = 'val'")).unwrap();
1069 assert!(matches!(
1070 expr,
1071 Expr::BinaryExpr(BinaryExpr {
1072 left: _,
1073 op: Operator::Eq,
1074 right: _
1075 })
1076 ));
1077 if let Expr::BinaryExpr(BinaryExpr { left, .. }) = expr {
1078 assert_eq!(left.as_ref(), expected);
1079 }
1080 }
1081
1082 let expected = Expr::Column(Column::new_unqualified("s0"));
1083 assert_column_eq(&planner, "s0", &expected);
1084 assert_column_eq(&planner, "`s0`", &expected);
1085
1086 let expected = Expr::ScalarFunction(ScalarFunction {
1087 func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
1088 args: vec![
1089 Expr::Column(Column::new_unqualified("st")),
1090 Expr::Literal(ScalarValue::Utf8(Some("s1".to_string())), None),
1091 ],
1092 });
1093 assert_column_eq(&planner, "st.s1", &expected);
1094 assert_column_eq(&planner, "`st`.`s1`", &expected);
1095 assert_column_eq(&planner, "st.`s1`", &expected);
1096
1097 let expected = Expr::ScalarFunction(ScalarFunction {
1098 func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
1099 args: vec![
1100 Expr::ScalarFunction(ScalarFunction {
1101 func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
1102 args: vec![
1103 Expr::Column(Column::new_unqualified("st")),
1104 Expr::Literal(ScalarValue::Utf8(Some("st".to_string())), None),
1105 ],
1106 }),
1107 Expr::Literal(ScalarValue::Utf8(Some("s2".to_string())), None),
1108 ],
1109 });
1110
1111 assert_column_eq(&planner, "st.st.s2", &expected);
1112 assert_column_eq(&planner, "`st`.`st`.`s2`", &expected);
1113 assert_column_eq(&planner, "st.st.`s2`", &expected);
1114 assert_column_eq(&planner, "st['st'][\"s2\"]", &expected);
1115 }
1116
1117 #[test]
1118 fn test_nested_list_refs() {
1119 let schema = Arc::new(Schema::new(vec![Field::new(
1120 "l",
1121 DataType::List(Arc::new(Field::new(
1122 "item",
1123 DataType::Struct(Fields::from(vec![Field::new("f1", DataType::Utf8, true)])),
1124 true,
1125 ))),
1126 true,
1127 )]));
1128
1129 let planner = Planner::new(schema);
1130
1131 let expected = array_element(col("l"), lit(0_i64));
1132 let expr = planner.parse_expr("l[0]").unwrap();
1133 assert_eq!(expr, expected);
1134
1135 let expected = get_field(array_element(col("l"), lit(0_i64)), "f1");
1136 let expr = planner.parse_expr("l[0]['f1']").unwrap();
1137 assert_eq!(expr, expected);
1138
1139 }
1144
1145 #[test]
1146 fn test_negative_expressions() {
1147 let schema = Arc::new(Schema::new(vec![Field::new("x", DataType::Int64, false)]));
1148
1149 let planner = Planner::new(schema.clone());
1150
1151 let expected = col("x")
1152 .gt(lit(-3_i64))
1153 .and(col("x").lt(-(lit(-5_i64) + lit(3_i64))));
1154
1155 let expr = planner.parse_filter("x > -3 AND x < -(-5 + 3)").unwrap();
1156
1157 assert_eq!(expr, expected);
1158
1159 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1160
1161 let batch = RecordBatch::try_new(
1162 schema,
1163 vec![Arc::new(Int64Array::from_iter_values(-5..5)) as ArrayRef],
1164 )
1165 .unwrap();
1166 let predicates = physical_expr.evaluate(&batch).unwrap();
1167 assert_eq!(
1168 predicates.into_array(0).unwrap().as_ref(),
1169 &BooleanArray::from(vec![
1170 false, false, false, true, true, true, true, false, false, false
1171 ])
1172 );
1173 }
1174
1175 #[test]
1176 fn test_negative_array_expressions() {
1177 let schema = Arc::new(Schema::new(vec![Field::new("x", DataType::Int64, false)]));
1178
1179 let planner = Planner::new(schema);
1180
1181 let expected = Expr::Literal(
1182 ScalarValue::List(Arc::new(
1183 ListArray::from_iter_primitive::<Float64Type, _, _>(vec![Some(
1184 [-1_f64, -2.0, -3.0, -4.0, -5.0].map(Some),
1185 )]),
1186 )),
1187 None,
1188 );
1189
1190 let expr = planner
1191 .parse_expr("[-1.0, -2.0, -3.0, -4.0, -5.0]")
1192 .unwrap();
1193
1194 assert_eq!(expr, expected);
1195 }
1196
1197 #[test]
1198 fn test_sql_like() {
1199 let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
1200
1201 let planner = Planner::new(schema.clone());
1202
1203 let expected = col("s").like(lit("str-4"));
1204 let expr = planner.parse_filter("s LIKE 'str-4'").unwrap();
1206 assert_eq!(expr, expected);
1207 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1208
1209 let batch = RecordBatch::try_new(
1210 schema,
1211 vec![Arc::new(StringArray::from_iter_values(
1212 (0..10).map(|v| format!("str-{}", v)),
1213 ))],
1214 )
1215 .unwrap();
1216 let predicates = physical_expr.evaluate(&batch).unwrap();
1217 assert_eq!(
1218 predicates.into_array(0).unwrap().as_ref(),
1219 &BooleanArray::from(vec![
1220 false, false, false, false, true, false, false, false, false, false
1221 ])
1222 );
1223 }
1224
1225 #[test]
1226 fn test_not_like() {
1227 let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
1228
1229 let planner = Planner::new(schema.clone());
1230
1231 let expected = col("s").not_like(lit("str-4"));
1232 let expr = planner.parse_filter("s NOT LIKE 'str-4'").unwrap();
1234 assert_eq!(expr, expected);
1235 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1236
1237 let batch = RecordBatch::try_new(
1238 schema,
1239 vec![Arc::new(StringArray::from_iter_values(
1240 (0..10).map(|v| format!("str-{}", v)),
1241 ))],
1242 )
1243 .unwrap();
1244 let predicates = physical_expr.evaluate(&batch).unwrap();
1245 assert_eq!(
1246 predicates.into_array(0).unwrap().as_ref(),
1247 &BooleanArray::from(vec![
1248 true, true, true, true, false, true, true, true, true, true
1249 ])
1250 );
1251 }
1252
1253 #[test]
1254 fn test_sql_is_in() {
1255 let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
1256
1257 let planner = Planner::new(schema.clone());
1258
1259 let expected = col("s").in_list(vec![lit("str-4"), lit("str-5")], false);
1260 let expr = planner.parse_filter("s IN ('str-4', 'str-5')").unwrap();
1262 assert_eq!(expr, expected);
1263 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1264
1265 let batch = RecordBatch::try_new(
1266 schema,
1267 vec![Arc::new(StringArray::from_iter_values(
1268 (0..10).map(|v| format!("str-{}", v)),
1269 ))],
1270 )
1271 .unwrap();
1272 let predicates = physical_expr.evaluate(&batch).unwrap();
1273 assert_eq!(
1274 predicates.into_array(0).unwrap().as_ref(),
1275 &BooleanArray::from(vec![
1276 false, false, false, false, true, true, false, false, false, false
1277 ])
1278 );
1279 }
1280
1281 #[test]
1282 fn test_sql_is_null() {
1283 let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
1284
1285 let planner = Planner::new(schema.clone());
1286
1287 let expected = col("s").is_null();
1288 let expr = planner.parse_filter("s IS NULL").unwrap();
1289 assert_eq!(expr, expected);
1290 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1291
1292 let batch = RecordBatch::try_new(
1293 schema,
1294 vec![Arc::new(StringArray::from_iter((0..10).map(|v| {
1295 if v % 3 == 0 {
1296 Some(format!("str-{}", v))
1297 } else {
1298 None
1299 }
1300 })))],
1301 )
1302 .unwrap();
1303 let predicates = physical_expr.evaluate(&batch).unwrap();
1304 assert_eq!(
1305 predicates.into_array(0).unwrap().as_ref(),
1306 &BooleanArray::from(vec![
1307 false, true, true, false, true, true, false, true, true, false
1308 ])
1309 );
1310
1311 let expr = planner.parse_filter("s IS NOT NULL").unwrap();
1312 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1313 let predicates = physical_expr.evaluate(&batch).unwrap();
1314 assert_eq!(
1315 predicates.into_array(0).unwrap().as_ref(),
1316 &BooleanArray::from(vec![
1317 true, false, false, true, false, false, true, false, false, true,
1318 ])
1319 );
1320 }
1321
1322 #[test]
1323 fn test_sql_invert() {
1324 let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Boolean, true)]));
1325
1326 let planner = Planner::new(schema.clone());
1327
1328 let expr = planner.parse_filter("NOT s").unwrap();
1329 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1330
1331 let batch = RecordBatch::try_new(
1332 schema,
1333 vec![Arc::new(BooleanArray::from_iter(
1334 (0..10).map(|v| Some(v % 3 == 0)),
1335 ))],
1336 )
1337 .unwrap();
1338 let predicates = physical_expr.evaluate(&batch).unwrap();
1339 assert_eq!(
1340 predicates.into_array(0).unwrap().as_ref(),
1341 &BooleanArray::from(vec![
1342 false, true, true, false, true, true, false, true, true, false
1343 ])
1344 );
1345 }
1346
1347 #[test]
1348 fn test_sql_cast() {
1349 let cases = &[
1350 (
1351 "x = cast('2021-01-01 00:00:00' as timestamp)",
1352 ArrowDataType::Timestamp(TimeUnit::Microsecond, None),
1353 ),
1354 (
1355 "x = cast('2021-01-01 00:00:00' as timestamp(0))",
1356 ArrowDataType::Timestamp(TimeUnit::Second, None),
1357 ),
1358 (
1359 "x = cast('2021-01-01 00:00:00.123' as timestamp(9))",
1360 ArrowDataType::Timestamp(TimeUnit::Nanosecond, None),
1361 ),
1362 (
1363 "x = cast('2021-01-01 00:00:00.123' as datetime(9))",
1364 ArrowDataType::Timestamp(TimeUnit::Nanosecond, None),
1365 ),
1366 ("x = cast('2021-01-01' as date)", ArrowDataType::Date32),
1367 (
1368 "x = cast('1.238' as decimal(9,3))",
1369 ArrowDataType::Decimal128(9, 3),
1370 ),
1371 ("x = cast(1 as float)", ArrowDataType::Float32),
1372 ("x = cast(1 as double)", ArrowDataType::Float64),
1373 ("x = cast(1 as tinyint)", ArrowDataType::Int8),
1374 ("x = cast(1 as smallint)", ArrowDataType::Int16),
1375 ("x = cast(1 as int)", ArrowDataType::Int32),
1376 ("x = cast(1 as integer)", ArrowDataType::Int32),
1377 ("x = cast(1 as bigint)", ArrowDataType::Int64),
1378 ("x = cast(1 as tinyint unsigned)", ArrowDataType::UInt8),
1379 ("x = cast(1 as smallint unsigned)", ArrowDataType::UInt16),
1380 ("x = cast(1 as int unsigned)", ArrowDataType::UInt32),
1381 ("x = cast(1 as integer unsigned)", ArrowDataType::UInt32),
1382 ("x = cast(1 as bigint unsigned)", ArrowDataType::UInt64),
1383 ("x = cast(1 as boolean)", ArrowDataType::Boolean),
1384 ("x = cast(1 as string)", ArrowDataType::Utf8),
1385 ];
1386
1387 for (sql, expected_data_type) in cases {
1388 let schema = Arc::new(Schema::new(vec![Field::new(
1389 "x",
1390 expected_data_type.clone(),
1391 true,
1392 )]));
1393 let planner = Planner::new(schema.clone());
1394 let expr = planner.parse_filter(sql).unwrap();
1395
1396 let expected_value_str = sql
1398 .split("cast(")
1399 .nth(1)
1400 .unwrap()
1401 .split(" as")
1402 .next()
1403 .unwrap();
1404 let expected_value_str = expected_value_str.trim_matches('\'');
1406
1407 match expr {
1408 Expr::BinaryExpr(BinaryExpr { right, .. }) => match right.as_ref() {
1409 Expr::Cast(Cast { expr, data_type }) => {
1410 match expr.as_ref() {
1411 Expr::Literal(ScalarValue::Utf8(Some(value_str)), _) => {
1412 assert_eq!(value_str, expected_value_str);
1413 }
1414 Expr::Literal(ScalarValue::Int64(Some(value)), _) => {
1415 assert_eq!(*value, 1);
1416 }
1417 _ => panic!("Expected cast to be applied to literal"),
1418 }
1419 assert_eq!(data_type, expected_data_type);
1420 }
1421 _ => panic!("Expected right to be a cast"),
1422 },
1423 _ => panic!("Expected binary expression"),
1424 }
1425 }
1426 }
1427
1428 #[test]
1429 fn test_sql_literals() {
1430 let cases = &[
1431 (
1432 "x = timestamp '2021-01-01 00:00:00'",
1433 ArrowDataType::Timestamp(TimeUnit::Microsecond, None),
1434 ),
1435 (
1436 "x = timestamp(0) '2021-01-01 00:00:00'",
1437 ArrowDataType::Timestamp(TimeUnit::Second, None),
1438 ),
1439 (
1440 "x = timestamp(9) '2021-01-01 00:00:00.123'",
1441 ArrowDataType::Timestamp(TimeUnit::Nanosecond, None),
1442 ),
1443 ("x = date '2021-01-01'", ArrowDataType::Date32),
1444 ("x = decimal(9,3) '1.238'", ArrowDataType::Decimal128(9, 3)),
1445 ];
1446
1447 for (sql, expected_data_type) in cases {
1448 let schema = Arc::new(Schema::new(vec![Field::new(
1449 "x",
1450 expected_data_type.clone(),
1451 true,
1452 )]));
1453 let planner = Planner::new(schema.clone());
1454 let expr = planner.parse_filter(sql).unwrap();
1455
1456 let expected_value_str = sql.split('\'').nth(1).unwrap();
1457
1458 match expr {
1459 Expr::BinaryExpr(BinaryExpr { right, .. }) => match right.as_ref() {
1460 Expr::Cast(Cast { expr, data_type }) => {
1461 match expr.as_ref() {
1462 Expr::Literal(ScalarValue::Utf8(Some(value_str)), _) => {
1463 assert_eq!(value_str, expected_value_str);
1464 }
1465 _ => panic!("Expected cast to be applied to literal"),
1466 }
1467 assert_eq!(data_type, expected_data_type);
1468 }
1469 _ => panic!("Expected right to be a cast"),
1470 },
1471 _ => panic!("Expected binary expression"),
1472 }
1473 }
1474 }
1475
1476 #[test]
1477 fn test_sql_array_literals() {
1478 let cases = [
1479 (
1480 "x = [1, 2, 3]",
1481 ArrowDataType::List(Arc::new(Field::new("item", ArrowDataType::Int64, true))),
1482 ),
1483 (
1484 "x = [1, 2, 3]",
1485 ArrowDataType::FixedSizeList(
1486 Arc::new(Field::new("item", ArrowDataType::Int64, true)),
1487 3,
1488 ),
1489 ),
1490 ];
1491
1492 for (sql, expected_data_type) in cases {
1493 let schema = Arc::new(Schema::new(vec![Field::new(
1494 "x",
1495 expected_data_type.clone(),
1496 true,
1497 )]));
1498 let planner = Planner::new(schema.clone());
1499 let expr = planner.parse_filter(sql).unwrap();
1500 let expr = planner.optimize_expr(expr).unwrap();
1501
1502 match expr {
1503 Expr::BinaryExpr(BinaryExpr { right, .. }) => match right.as_ref() {
1504 Expr::Literal(value, _) => {
1505 assert_eq!(&value.data_type(), &expected_data_type);
1506 }
1507 _ => panic!("Expected right to be a literal"),
1508 },
1509 _ => panic!("Expected binary expression"),
1510 }
1511 }
1512 }
1513
1514 #[test]
1515 fn test_sql_between() {
1516 use arrow_array::{Float64Array, Int32Array, TimestampMicrosecondArray};
1517 use arrow_schema::{DataType, Field, Schema, TimeUnit};
1518 use std::sync::Arc;
1519
1520 let schema = Arc::new(Schema::new(vec![
1521 Field::new("x", DataType::Int32, false),
1522 Field::new("y", DataType::Float64, false),
1523 Field::new(
1524 "ts",
1525 DataType::Timestamp(TimeUnit::Microsecond, None),
1526 false,
1527 ),
1528 ]));
1529
1530 let planner = Planner::new(schema.clone());
1531
1532 let expr = planner
1534 .parse_filter("x BETWEEN CAST(3 AS INT) AND CAST(7 AS INT)")
1535 .unwrap();
1536 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1537
1538 let base_ts = 1704067200000000_i64; let ts_array = TimestampMicrosecondArray::from_iter_values(
1542 (0..10).map(|i| base_ts + i * 1_000_000), );
1544
1545 let batch = RecordBatch::try_new(
1546 schema,
1547 vec![
1548 Arc::new(Int32Array::from_iter_values(0..10)) as ArrayRef,
1549 Arc::new(Float64Array::from_iter_values((0..10).map(|v| v as f64))),
1550 Arc::new(ts_array),
1551 ],
1552 )
1553 .unwrap();
1554
1555 let predicates = physical_expr.evaluate(&batch).unwrap();
1556 assert_eq!(
1557 predicates.into_array(0).unwrap().as_ref(),
1558 &BooleanArray::from(vec![
1559 false, false, false, true, true, true, true, true, false, false
1560 ])
1561 );
1562
1563 let expr = planner
1565 .parse_filter("x NOT BETWEEN CAST(3 AS INT) AND CAST(7 AS INT)")
1566 .unwrap();
1567 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1568
1569 let predicates = physical_expr.evaluate(&batch).unwrap();
1570 assert_eq!(
1571 predicates.into_array(0).unwrap().as_ref(),
1572 &BooleanArray::from(vec![
1573 true, true, true, false, false, false, false, false, true, true
1574 ])
1575 );
1576
1577 let expr = planner.parse_filter("y BETWEEN 2.5 AND 6.5").unwrap();
1579 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1580
1581 let predicates = physical_expr.evaluate(&batch).unwrap();
1582 assert_eq!(
1583 predicates.into_array(0).unwrap().as_ref(),
1584 &BooleanArray::from(vec![
1585 false, false, false, true, true, true, true, false, false, false
1586 ])
1587 );
1588
1589 let expr = planner
1591 .parse_filter(
1592 "ts BETWEEN timestamp '2024-01-01 00:00:03' AND timestamp '2024-01-01 00:00:07'",
1593 )
1594 .unwrap();
1595 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1596
1597 let predicates = physical_expr.evaluate(&batch).unwrap();
1598 assert_eq!(
1599 predicates.into_array(0).unwrap().as_ref(),
1600 &BooleanArray::from(vec![
1601 false, false, false, true, true, true, true, true, false, false
1602 ])
1603 );
1604 }
1605
1606 #[test]
1607 fn test_sql_comparison() {
1608 let batch: Vec<(&str, ArrayRef)> = vec![
1610 (
1611 "timestamp_s",
1612 Arc::new(TimestampSecondArray::from_iter_values(0..10)),
1613 ),
1614 (
1615 "timestamp_ms",
1616 Arc::new(TimestampMillisecondArray::from_iter_values(0..10)),
1617 ),
1618 (
1619 "timestamp_us",
1620 Arc::new(TimestampMicrosecondArray::from_iter_values(0..10)),
1621 ),
1622 (
1623 "timestamp_ns",
1624 Arc::new(TimestampNanosecondArray::from_iter_values(4995..5005)),
1625 ),
1626 ];
1627 let batch = RecordBatch::try_from_iter(batch).unwrap();
1628
1629 let planner = Planner::new(batch.schema());
1630
1631 let expressions = &[
1633 "timestamp_s >= TIMESTAMP '1970-01-01 00:00:05'",
1634 "timestamp_ms >= TIMESTAMP '1970-01-01 00:00:00.005'",
1635 "timestamp_us >= TIMESTAMP '1970-01-01 00:00:00.000005'",
1636 "timestamp_ns >= TIMESTAMP '1970-01-01 00:00:00.000005'",
1637 ];
1638
1639 let expected: ArrayRef = Arc::new(BooleanArray::from_iter(
1640 std::iter::repeat_n(Some(false), 5).chain(std::iter::repeat_n(Some(true), 5)),
1641 ));
1642 for expression in expressions {
1643 let logical_expr = planner.parse_filter(expression).unwrap();
1645 let logical_expr = planner.optimize_expr(logical_expr).unwrap();
1646 let physical_expr = planner.create_physical_expr(&logical_expr).unwrap();
1647
1648 let result = physical_expr.evaluate(&batch).unwrap();
1650 let result = result.into_array(batch.num_rows()).unwrap();
1651 assert_eq!(&expected, &result, "unexpected result for {}", expression);
1652 }
1653 }
1654
1655 #[test]
1656 fn test_columns_in_expr() {
1657 let expr = col("s0").gt(lit("value")).and(
1658 col("st")
1659 .field("st")
1660 .field("s2")
1661 .eq(lit("value"))
1662 .or(col("st")
1663 .field("s1")
1664 .in_list(vec![lit("value 1"), lit("value 2")], false)),
1665 );
1666
1667 let columns = Planner::column_names_in_expr(&expr);
1668 assert_eq!(columns, vec!["s0", "st.s1", "st.st.s2"]);
1669 }
1670
1671 #[test]
1672 fn test_parse_binary_expr() {
1673 let bin_str = "x'616263'";
1674
1675 let schema = Arc::new(Schema::new(vec![Field::new(
1676 "binary",
1677 DataType::Binary,
1678 true,
1679 )]));
1680 let planner = Planner::new(schema);
1681 let expr = planner.parse_expr(bin_str).unwrap();
1682 assert_eq!(
1683 expr,
1684 Expr::Literal(ScalarValue::Binary(Some(vec![b'a', b'b', b'c'])), None)
1685 );
1686 }
1687
1688 #[test]
1689 fn test_lance_context_provider_expr_planners() {
1690 let ctx_provider = LanceContextProvider::default();
1691 assert!(!ctx_provider.get_expr_planners().is_empty());
1692 }
1693}