1use std::borrow::Cow;
7use std::collections::{BTreeSet, VecDeque};
8use std::sync::Arc;
9
10use crate::expr::safe_coerce_scalar;
11use crate::logical_expr::{coerce_filter_type_to_boolean, get_as_string_scalar_opt, resolve_expr};
12use crate::sql::{parse_sql_expr, parse_sql_filter};
13use arrow::compute::CastOptions;
14use arrow_array::ListArray;
15use arrow_buffer::OffsetBuffer;
16use arrow_schema::{DataType as ArrowDataType, Field, SchemaRef, TimeUnit};
17use arrow_select::concat::concat;
18use datafusion::common::tree_node::{TreeNode, TreeNodeRecursion, TreeNodeVisitor};
19use datafusion::common::DFSchema;
20use datafusion::config::ConfigOptions;
21use datafusion::error::Result as DFResult;
22use datafusion::execution::config::SessionConfig;
23use datafusion::execution::context::SessionState;
24use datafusion::execution::runtime_env::RuntimeEnvBuilder;
25use datafusion::execution::session_state::SessionStateBuilder;
26use datafusion::logical_expr::expr::ScalarFunction;
27use datafusion::logical_expr::planner::{ExprPlanner, PlannerResult, RawFieldAccessExpr};
28use datafusion::logical_expr::{
29 AggregateUDF, ColumnarValue, GetFieldAccess, ScalarFunctionArgs, ScalarUDF, ScalarUDFImpl,
30 Signature, Volatility, WindowUDF,
31};
32use datafusion::optimizer::simplify_expressions::SimplifyContext;
33use datafusion::sql::planner::{ContextProvider, ParserOptions, PlannerContext, SqlToRel};
34use datafusion::sql::sqlparser::ast::{
35 AccessExpr, Array as SQLArray, BinaryOperator, DataType as SQLDataType, ExactNumberInfo,
36 Expr as SQLExpr, Function, FunctionArg, FunctionArgExpr, FunctionArguments, Ident,
37 ObjectNamePart, Subscript, TimezoneInfo, UnaryOperator, Value, ValueWithSpan,
38};
39use datafusion::{
40 common::Column,
41 logical_expr::{col, Between, BinaryExpr, Like, Operator},
42 physical_expr::execution_props::ExecutionProps,
43 physical_plan::PhysicalExpr,
44 prelude::Expr,
45 scalar::ScalarValue,
46};
47use datafusion_functions::core::getfield::GetFieldFunc;
48use lance_arrow::cast::cast_with_options;
49use lance_core::datatypes::Schema;
50use lance_core::error::LanceOptionExt;
51use snafu::location;
52
53use lance_core::{Error, Result};
54
55#[derive(Debug, Clone)]
56struct CastListF16Udf {
57 signature: Signature,
58}
59
60impl CastListF16Udf {
61 pub fn new() -> Self {
62 Self {
63 signature: Signature::any(1, Volatility::Immutable),
64 }
65 }
66}
67
68impl ScalarUDFImpl for CastListF16Udf {
69 fn as_any(&self) -> &dyn std::any::Any {
70 self
71 }
72
73 fn name(&self) -> &str {
74 "_cast_list_f16"
75 }
76
77 fn signature(&self) -> &Signature {
78 &self.signature
79 }
80
81 fn return_type(&self, arg_types: &[ArrowDataType]) -> DFResult<ArrowDataType> {
82 let input = &arg_types[0];
83 match input {
84 ArrowDataType::FixedSizeList(field, size) => {
85 if field.data_type() != &ArrowDataType::Float32
86 && field.data_type() != &ArrowDataType::Float16
87 {
88 return Err(datafusion::error::DataFusionError::Execution(
89 "cast_list_f16 only supports list of float32 or float16".to_string(),
90 ));
91 }
92 Ok(ArrowDataType::FixedSizeList(
93 Arc::new(Field::new(
94 field.name(),
95 ArrowDataType::Float16,
96 field.is_nullable(),
97 )),
98 *size,
99 ))
100 }
101 ArrowDataType::List(field) => {
102 if field.data_type() != &ArrowDataType::Float32
103 && field.data_type() != &ArrowDataType::Float16
104 {
105 return Err(datafusion::error::DataFusionError::Execution(
106 "cast_list_f16 only supports list of float32 or float16".to_string(),
107 ));
108 }
109 Ok(ArrowDataType::List(Arc::new(Field::new(
110 field.name(),
111 ArrowDataType::Float16,
112 field.is_nullable(),
113 ))))
114 }
115 _ => Err(datafusion::error::DataFusionError::Execution(
116 "cast_list_f16 only supports FixedSizeList/List arguments".to_string(),
117 )),
118 }
119 }
120
121 fn invoke_with_args(&self, func_args: ScalarFunctionArgs) -> DFResult<ColumnarValue> {
122 let ColumnarValue::Array(arr) = &func_args.args[0] else {
123 return Err(datafusion::error::DataFusionError::Execution(
124 "cast_list_f16 only supports array arguments".to_string(),
125 ));
126 };
127
128 let to_type = match arr.data_type() {
129 ArrowDataType::FixedSizeList(field, size) => ArrowDataType::FixedSizeList(
130 Arc::new(Field::new(
131 field.name(),
132 ArrowDataType::Float16,
133 field.is_nullable(),
134 )),
135 *size,
136 ),
137 ArrowDataType::List(field) => ArrowDataType::List(Arc::new(Field::new(
138 field.name(),
139 ArrowDataType::Float16,
140 field.is_nullable(),
141 ))),
142 _ => {
143 return Err(datafusion::error::DataFusionError::Execution(
144 "cast_list_f16 only supports array arguments".to_string(),
145 ));
146 }
147 };
148
149 let res = cast_with_options(arr.as_ref(), &to_type, &CastOptions::default())?;
150 Ok(ColumnarValue::Array(res))
151 }
152}
153
154struct LanceContextProvider {
156 options: datafusion::config::ConfigOptions,
157 state: SessionState,
158 expr_planners: Vec<Arc<dyn ExprPlanner>>,
159}
160
161impl Default for LanceContextProvider {
162 fn default() -> Self {
163 let config = SessionConfig::new();
164 let runtime = RuntimeEnvBuilder::new().build_arc().unwrap();
165 let mut state_builder = SessionStateBuilder::new()
166 .with_config(config)
167 .with_runtime_env(runtime)
168 .with_default_features();
169
170 let expr_planners = state_builder.expr_planners().as_ref().unwrap().clone();
175
176 Self {
177 options: ConfigOptions::default(),
178 state: state_builder.build(),
179 expr_planners,
180 }
181 }
182}
183
184impl ContextProvider for LanceContextProvider {
185 fn get_table_source(
186 &self,
187 name: datafusion::sql::TableReference,
188 ) -> DFResult<Arc<dyn datafusion::logical_expr::TableSource>> {
189 Err(datafusion::error::DataFusionError::NotImplemented(format!(
190 "Attempt to reference inner table {} not supported",
191 name
192 )))
193 }
194
195 fn get_aggregate_meta(&self, name: &str) -> Option<Arc<AggregateUDF>> {
196 self.state.aggregate_functions().get(name).cloned()
197 }
198
199 fn get_window_meta(&self, name: &str) -> Option<Arc<WindowUDF>> {
200 self.state.window_functions().get(name).cloned()
201 }
202
203 fn get_function_meta(&self, f: &str) -> Option<Arc<ScalarUDF>> {
204 match f {
205 "_cast_list_f16" => Some(Arc::new(ScalarUDF::new_from_impl(CastListF16Udf::new()))),
208 _ => self.state.scalar_functions().get(f).cloned(),
209 }
210 }
211
212 fn get_variable_type(&self, _: &[String]) -> Option<ArrowDataType> {
213 None
215 }
216
217 fn options(&self) -> &datafusion::config::ConfigOptions {
218 &self.options
219 }
220
221 fn udf_names(&self) -> Vec<String> {
222 self.state.scalar_functions().keys().cloned().collect()
223 }
224
225 fn udaf_names(&self) -> Vec<String> {
226 self.state.aggregate_functions().keys().cloned().collect()
227 }
228
229 fn udwf_names(&self) -> Vec<String> {
230 self.state.window_functions().keys().cloned().collect()
231 }
232
233 fn get_expr_planners(&self) -> &[Arc<dyn ExprPlanner>] {
234 &self.expr_planners
235 }
236}
237
238pub struct Planner {
239 schema: SchemaRef,
240 context_provider: LanceContextProvider,
241}
242
243impl Planner {
244 pub fn new(schema: SchemaRef) -> Self {
245 Self {
246 schema,
247 context_provider: LanceContextProvider::default(),
248 }
249 }
250
251 fn column(idents: &[Ident]) -> Expr {
252 let mut column = col(&idents[0].value);
253 for ident in &idents[1..] {
254 column = Expr::ScalarFunction(ScalarFunction {
255 args: vec![
256 column,
257 Expr::Literal(ScalarValue::Utf8(Some(ident.value.clone()))),
258 ],
259 func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
260 });
261 }
262 column
263 }
264
265 fn binary_op(&self, op: &BinaryOperator) -> Result<Operator> {
266 Ok(match op {
267 BinaryOperator::Plus => Operator::Plus,
268 BinaryOperator::Minus => Operator::Minus,
269 BinaryOperator::Multiply => Operator::Multiply,
270 BinaryOperator::Divide => Operator::Divide,
271 BinaryOperator::Modulo => Operator::Modulo,
272 BinaryOperator::StringConcat => Operator::StringConcat,
273 BinaryOperator::Gt => Operator::Gt,
274 BinaryOperator::Lt => Operator::Lt,
275 BinaryOperator::GtEq => Operator::GtEq,
276 BinaryOperator::LtEq => Operator::LtEq,
277 BinaryOperator::Eq => Operator::Eq,
278 BinaryOperator::NotEq => Operator::NotEq,
279 BinaryOperator::And => Operator::And,
280 BinaryOperator::Or => Operator::Or,
281 _ => {
282 return Err(Error::invalid_input(
283 format!("Operator {op} is not supported"),
284 location!(),
285 ));
286 }
287 })
288 }
289
290 fn binary_expr(&self, left: &SQLExpr, op: &BinaryOperator, right: &SQLExpr) -> Result<Expr> {
291 Ok(Expr::BinaryExpr(BinaryExpr::new(
292 Box::new(self.parse_sql_expr(left)?),
293 self.binary_op(op)?,
294 Box::new(self.parse_sql_expr(right)?),
295 )))
296 }
297
298 fn unary_expr(&self, op: &UnaryOperator, expr: &SQLExpr) -> Result<Expr> {
299 Ok(match op {
300 UnaryOperator::Not | UnaryOperator::PGBitwiseNot => {
301 Expr::Not(Box::new(self.parse_sql_expr(expr)?))
302 }
303
304 UnaryOperator::Minus => {
305 use datafusion::logical_expr::lit;
306 match expr {
307 SQLExpr::Value(ValueWithSpan { value: Value::Number(n, _), ..}) => match n.parse::<i64>() {
308 Ok(n) => lit(-n),
309 Err(_) => lit(-n
310 .parse::<f64>()
311 .map_err(|_e| {
312 Error::invalid_input(
313 format!("negative operator can be only applied to integer and float operands, got: {n}"),
314 location!(),
315 )
316 })?),
317 },
318 _ => {
319 Expr::Negative(Box::new(self.parse_sql_expr(expr)?))
320 }
321 }
322 }
323
324 _ => {
325 return Err(Error::invalid_input(
326 format!("Unary operator '{:?}' is not supported", op),
327 location!(),
328 ));
329 }
330 })
331 }
332
333 fn number(&self, value: &str, negative: bool) -> Result<Expr> {
335 use datafusion::logical_expr::lit;
336 let value: Cow<str> = if negative {
337 Cow::Owned(format!("-{}", value))
338 } else {
339 Cow::Borrowed(value)
340 };
341 if let Ok(n) = value.parse::<i64>() {
342 Ok(lit(n))
343 } else {
344 value.parse::<f64>().map(lit).map_err(|_| {
345 Error::invalid_input(
346 format!("'{value}' is not supported number value."),
347 location!(),
348 )
349 })
350 }
351 }
352
353 fn value(&self, value: &Value) -> Result<Expr> {
354 Ok(match value {
355 Value::Number(v, _) => self.number(v.as_str(), false)?,
356 Value::SingleQuotedString(s) => Expr::Literal(ScalarValue::Utf8(Some(s.clone()))),
357 Value::HexStringLiteral(hsl) => {
358 Expr::Literal(ScalarValue::Binary(Self::try_decode_hex_literal(hsl)))
359 }
360 Value::DoubleQuotedString(s) => Expr::Literal(ScalarValue::Utf8(Some(s.clone()))),
361 Value::Boolean(v) => Expr::Literal(ScalarValue::Boolean(Some(*v))),
362 Value::Null => Expr::Literal(ScalarValue::Null),
363 _ => todo!(),
364 })
365 }
366
367 fn parse_function_args(&self, func_args: &FunctionArg) -> Result<Expr> {
368 match func_args {
369 FunctionArg::Unnamed(FunctionArgExpr::Expr(expr)) => self.parse_sql_expr(expr),
370 _ => Err(Error::invalid_input(
371 format!("Unsupported function args: {:?}", func_args),
372 location!(),
373 )),
374 }
375 }
376
377 fn legacy_parse_function(&self, func: &Function) -> Result<Expr> {
384 match &func.args {
385 FunctionArguments::List(args) => {
386 if func.name.0.len() != 1 {
387 return Err(Error::invalid_input(
388 format!("Function name must have 1 part, got: {:?}", func.name.0),
389 location!(),
390 ));
391 }
392 Ok(Expr::IsNotNull(Box::new(
393 self.parse_function_args(&args.args[0])?,
394 )))
395 }
396 _ => Err(Error::invalid_input(
397 format!("Unsupported function args: {:?}", &func.args),
398 location!(),
399 )),
400 }
401 }
402
403 fn parse_function(&self, function: SQLExpr) -> Result<Expr> {
404 if let SQLExpr::Function(function) = &function {
405 if let Some(ObjectNamePart::Identifier(name)) = &function.name.0.first() {
406 if &name.value == "is_valid" {
407 return self.legacy_parse_function(function);
408 }
409 }
410 }
411 let sql_to_rel = SqlToRel::new_with_options(
412 &self.context_provider,
413 ParserOptions {
414 parse_float_as_decimal: false,
415 enable_ident_normalization: false,
416 support_varchar_with_length: false,
417 enable_options_value_normalization: false,
418 collect_spans: false,
419 map_varchar_to_utf8view: false,
420 },
421 );
422
423 let mut planner_context = PlannerContext::default();
424 let schema = DFSchema::try_from(self.schema.as_ref().clone())?;
425 Ok(sql_to_rel.sql_to_expr(function, &schema, &mut planner_context)?)
426 }
427
428 fn parse_type(&self, data_type: &SQLDataType) -> Result<ArrowDataType> {
429 const SUPPORTED_TYPES: [&str; 13] = [
430 "int [unsigned]",
431 "tinyint [unsigned]",
432 "smallint [unsigned]",
433 "bigint [unsigned]",
434 "float",
435 "double",
436 "string",
437 "binary",
438 "date",
439 "timestamp(precision)",
440 "datetime(precision)",
441 "decimal(precision,scale)",
442 "boolean",
443 ];
444 match data_type {
445 SQLDataType::String(_) => Ok(ArrowDataType::Utf8),
446 SQLDataType::Binary(_) => Ok(ArrowDataType::Binary),
447 SQLDataType::Float(_) => Ok(ArrowDataType::Float32),
448 SQLDataType::Double(_) => Ok(ArrowDataType::Float64),
449 SQLDataType::Boolean => Ok(ArrowDataType::Boolean),
450 SQLDataType::TinyInt(_) => Ok(ArrowDataType::Int8),
451 SQLDataType::SmallInt(_) => Ok(ArrowDataType::Int16),
452 SQLDataType::Int(_) | SQLDataType::Integer(_) => Ok(ArrowDataType::Int32),
453 SQLDataType::BigInt(_) => Ok(ArrowDataType::Int64),
454 SQLDataType::TinyIntUnsigned(_) => Ok(ArrowDataType::UInt8),
455 SQLDataType::SmallIntUnsigned(_) => Ok(ArrowDataType::UInt16),
456 SQLDataType::IntUnsigned(_) | SQLDataType::IntegerUnsigned(_) => {
457 Ok(ArrowDataType::UInt32)
458 }
459 SQLDataType::BigIntUnsigned(_) => Ok(ArrowDataType::UInt64),
460 SQLDataType::Date => Ok(ArrowDataType::Date32),
461 SQLDataType::Timestamp(resolution, tz) => {
462 match tz {
463 TimezoneInfo::None => {}
464 _ => {
465 return Err(Error::invalid_input(
466 "Timezone not supported in timestamp".to_string(),
467 location!(),
468 ));
469 }
470 };
471 let time_unit = match resolution {
472 None => TimeUnit::Microsecond,
474 Some(0) => TimeUnit::Second,
475 Some(3) => TimeUnit::Millisecond,
476 Some(6) => TimeUnit::Microsecond,
477 Some(9) => TimeUnit::Nanosecond,
478 _ => {
479 return Err(Error::invalid_input(
480 format!("Unsupported datetime resolution: {:?}", resolution),
481 location!(),
482 ));
483 }
484 };
485 Ok(ArrowDataType::Timestamp(time_unit, None))
486 }
487 SQLDataType::Datetime(resolution) => {
488 let time_unit = match resolution {
489 None => TimeUnit::Microsecond,
490 Some(0) => TimeUnit::Second,
491 Some(3) => TimeUnit::Millisecond,
492 Some(6) => TimeUnit::Microsecond,
493 Some(9) => TimeUnit::Nanosecond,
494 _ => {
495 return Err(Error::invalid_input(
496 format!("Unsupported datetime resolution: {:?}", resolution),
497 location!(),
498 ));
499 }
500 };
501 Ok(ArrowDataType::Timestamp(time_unit, None))
502 }
503 SQLDataType::Decimal(number_info) => match number_info {
504 ExactNumberInfo::PrecisionAndScale(precision, scale) => {
505 Ok(ArrowDataType::Decimal128(*precision as u8, *scale as i8))
506 }
507 _ => Err(Error::invalid_input(
508 format!(
509 "Must provide precision and scale for decimal: {:?}",
510 number_info
511 ),
512 location!(),
513 )),
514 },
515 _ => Err(Error::invalid_input(
516 format!(
517 "Unsupported data type: {:?}. Supported types: {:?}",
518 data_type, SUPPORTED_TYPES
519 ),
520 location!(),
521 )),
522 }
523 }
524
525 fn plan_field_access(&self, mut field_access_expr: RawFieldAccessExpr) -> Result<Expr> {
526 let df_schema = DFSchema::try_from(self.schema.as_ref().clone())?;
527 for planner in self.context_provider.get_expr_planners() {
528 match planner.plan_field_access(field_access_expr, &df_schema)? {
529 PlannerResult::Planned(expr) => return Ok(expr),
530 PlannerResult::Original(expr) => {
531 field_access_expr = expr;
532 }
533 }
534 }
535 Err(Error::invalid_input(
536 "Field access could not be planned",
537 location!(),
538 ))
539 }
540
541 fn parse_sql_expr(&self, expr: &SQLExpr) -> Result<Expr> {
542 match expr {
543 SQLExpr::Identifier(id) => {
544 if id.quote_style == Some('"') {
547 Ok(Expr::Literal(ScalarValue::Utf8(Some(id.value.clone()))))
548 } else if id.quote_style == Some('`') {
551 Ok(Expr::Column(Column::from_name(id.value.clone())))
552 } else {
553 Ok(Self::column(vec![id.clone()].as_slice()))
554 }
555 }
556 SQLExpr::CompoundIdentifier(ids) => Ok(Self::column(ids.as_slice())),
557 SQLExpr::BinaryOp { left, op, right } => self.binary_expr(left, op, right),
558 SQLExpr::UnaryOp { op, expr } => self.unary_expr(op, expr),
559 SQLExpr::Value(value) => self.value(&value.value),
560 SQLExpr::Array(SQLArray { elem, .. }) => {
561 let mut values = vec![];
562
563 let array_literal_error = |pos: usize, value: &_| {
564 Err(Error::invalid_input(
565 format!(
566 "Expected a literal value in array, instead got {} at position {}",
567 value, pos
568 ),
569 location!(),
570 ))
571 };
572
573 for (pos, expr) in elem.iter().enumerate() {
574 match expr {
575 SQLExpr::Value(value) => {
576 if let Expr::Literal(value) = self.value(&value.value)? {
577 values.push(value);
578 } else {
579 return array_literal_error(pos, expr);
580 }
581 }
582 SQLExpr::UnaryOp {
583 op: UnaryOperator::Minus,
584 expr,
585 } => {
586 if let SQLExpr::Value(ValueWithSpan {
587 value: Value::Number(number, _),
588 ..
589 }) = expr.as_ref()
590 {
591 if let Expr::Literal(value) = self.number(number, true)? {
592 values.push(value);
593 } else {
594 return array_literal_error(pos, expr);
595 }
596 } else {
597 return array_literal_error(pos, expr);
598 }
599 }
600 _ => {
601 return array_literal_error(pos, expr);
602 }
603 }
604 }
605
606 let field = if !values.is_empty() {
607 let data_type = values[0].data_type();
608
609 for value in &mut values {
610 if value.data_type() != data_type {
611 *value = safe_coerce_scalar(value, &data_type).ok_or_else(|| Error::invalid_input(
612 format!("Array expressions must have a consistent datatype. Expected: {}, got: {}", data_type, value.data_type()),
613 location!()
614 ))?;
615 }
616 }
617 Field::new("item", data_type, true)
618 } else {
619 Field::new("item", ArrowDataType::Null, true)
620 };
621
622 let values = values
623 .into_iter()
624 .map(|v| v.to_array().map_err(Error::from))
625 .collect::<Result<Vec<_>>>()?;
626 let array_refs = values.iter().map(|v| v.as_ref()).collect::<Vec<_>>();
627 let values = concat(&array_refs)?;
628 let values = ListArray::try_new(
629 field.into(),
630 OffsetBuffer::from_lengths([values.len()]),
631 values,
632 None,
633 )?;
634
635 Ok(Expr::Literal(ScalarValue::List(Arc::new(values))))
636 }
637 SQLExpr::TypedString { data_type, value } => {
639 let value = value.clone().into_string().expect_ok()?;
640 Ok(Expr::Cast(datafusion::logical_expr::Cast {
641 expr: Box::new(Expr::Literal(ScalarValue::Utf8(Some(value)))),
642 data_type: self.parse_type(data_type)?,
643 }))
644 }
645 SQLExpr::IsFalse(expr) => Ok(Expr::IsFalse(Box::new(self.parse_sql_expr(expr)?))),
646 SQLExpr::IsNotFalse(expr) => Ok(Expr::IsNotFalse(Box::new(self.parse_sql_expr(expr)?))),
647 SQLExpr::IsTrue(expr) => Ok(Expr::IsTrue(Box::new(self.parse_sql_expr(expr)?))),
648 SQLExpr::IsNotTrue(expr) => Ok(Expr::IsNotTrue(Box::new(self.parse_sql_expr(expr)?))),
649 SQLExpr::IsNull(expr) => Ok(Expr::IsNull(Box::new(self.parse_sql_expr(expr)?))),
650 SQLExpr::IsNotNull(expr) => Ok(Expr::IsNotNull(Box::new(self.parse_sql_expr(expr)?))),
651 SQLExpr::InList {
652 expr,
653 list,
654 negated,
655 } => {
656 let value_expr = self.parse_sql_expr(expr)?;
657 let list_exprs = list
658 .iter()
659 .map(|e| self.parse_sql_expr(e))
660 .collect::<Result<Vec<_>>>()?;
661 Ok(value_expr.in_list(list_exprs, *negated))
662 }
663 SQLExpr::Nested(inner) => self.parse_sql_expr(inner.as_ref()),
664 SQLExpr::Function(_) => self.parse_function(expr.clone()),
665 SQLExpr::ILike {
666 negated,
667 expr,
668 pattern,
669 escape_char,
670 any: _,
671 } => Ok(Expr::Like(Like::new(
672 *negated,
673 Box::new(self.parse_sql_expr(expr)?),
674 Box::new(self.parse_sql_expr(pattern)?),
675 escape_char.as_ref().and_then(|c| c.chars().next()),
676 true,
677 ))),
678 SQLExpr::Like {
679 negated,
680 expr,
681 pattern,
682 escape_char,
683 any: _,
684 } => Ok(Expr::Like(Like::new(
685 *negated,
686 Box::new(self.parse_sql_expr(expr)?),
687 Box::new(self.parse_sql_expr(pattern)?),
688 escape_char.as_ref().and_then(|c| c.chars().next()),
689 false,
690 ))),
691 SQLExpr::Cast {
692 expr, data_type, ..
693 } => Ok(Expr::Cast(datafusion::logical_expr::Cast {
694 expr: Box::new(self.parse_sql_expr(expr)?),
695 data_type: self.parse_type(data_type)?,
696 })),
697 SQLExpr::JsonAccess { .. } => Err(Error::invalid_input(
698 "JSON access is not supported",
699 location!(),
700 )),
701 SQLExpr::CompoundFieldAccess { root, access_chain } => {
702 let mut expr = self.parse_sql_expr(root)?;
703
704 for access in access_chain {
705 let field_access = match access {
706 AccessExpr::Dot(SQLExpr::Identifier(Ident { value: s, .. }))
708 | AccessExpr::Subscript(Subscript::Index {
709 index:
710 SQLExpr::Value(ValueWithSpan {
711 value:
712 Value::SingleQuotedString(s) | Value::DoubleQuotedString(s),
713 ..
714 }),
715 }) => GetFieldAccess::NamedStructField {
716 name: ScalarValue::from(s.as_str()),
717 },
718 AccessExpr::Subscript(Subscript::Index { index }) => {
719 let key = Box::new(self.parse_sql_expr(index)?);
720 GetFieldAccess::ListIndex { key }
721 }
722 AccessExpr::Subscript(Subscript::Slice { .. }) => {
723 return Err(Error::invalid_input(
724 "Slice subscript is not supported",
725 location!(),
726 ));
727 }
728 _ => {
729 return Err(Error::invalid_input(
732 "Only dot notation or index access is supported for field access",
733 location!(),
734 ));
735 }
736 };
737
738 let field_access_expr = RawFieldAccessExpr { expr, field_access };
739 expr = self.plan_field_access(field_access_expr)?;
740 }
741
742 Ok(expr)
743 }
744 SQLExpr::Between {
745 expr,
746 negated,
747 low,
748 high,
749 } => {
750 let expr = self.parse_sql_expr(expr)?;
752 let low = self.parse_sql_expr(low)?;
753 let high = self.parse_sql_expr(high)?;
754
755 let between = Expr::Between(Between::new(
756 Box::new(expr),
757 *negated,
758 Box::new(low),
759 Box::new(high),
760 ));
761 Ok(between)
762 }
763 _ => Err(Error::invalid_input(
764 format!("Expression '{expr}' is not supported SQL in lance"),
765 location!(),
766 )),
767 }
768 }
769
770 pub fn parse_filter(&self, filter: &str) -> Result<Expr> {
775 let ast_expr = parse_sql_filter(filter)?;
777 let expr = self.parse_sql_expr(&ast_expr)?;
778 let schema = Schema::try_from(self.schema.as_ref())?;
779 let resolved = resolve_expr(&expr, &schema)?;
780 coerce_filter_type_to_boolean(resolved)
781 }
782
783 pub fn parse_expr(&self, expr: &str) -> Result<Expr> {
788 let ast_expr = parse_sql_expr(expr)?;
789 let expr = self.parse_sql_expr(&ast_expr)?;
790 let schema = Schema::try_from(self.schema.as_ref())?;
791 let resolved = resolve_expr(&expr, &schema)?;
792 Ok(resolved)
793 }
794
795 fn try_decode_hex_literal(s: &str) -> Option<Vec<u8>> {
801 let hex_bytes = s.as_bytes();
802 let mut decoded_bytes = Vec::with_capacity(hex_bytes.len().div_ceil(2));
803
804 let start_idx = hex_bytes.len() % 2;
805 if start_idx > 0 {
806 decoded_bytes.push(Self::try_decode_hex_char(hex_bytes[0])?);
808 }
809
810 for i in (start_idx..hex_bytes.len()).step_by(2) {
811 let high = Self::try_decode_hex_char(hex_bytes[i])?;
812 let low = Self::try_decode_hex_char(hex_bytes[i + 1])?;
813 decoded_bytes.push((high << 4) | low);
814 }
815
816 Some(decoded_bytes)
817 }
818
819 const fn try_decode_hex_char(c: u8) -> Option<u8> {
823 match c {
824 b'A'..=b'F' => Some(c - b'A' + 10),
825 b'a'..=b'f' => Some(c - b'a' + 10),
826 b'0'..=b'9' => Some(c - b'0'),
827 _ => None,
828 }
829 }
830
831 pub fn optimize_expr(&self, expr: Expr) -> Result<Expr> {
833 let df_schema = Arc::new(DFSchema::try_from(self.schema.as_ref().clone())?);
834
835 let props = ExecutionProps::default();
838 let simplify_context = SimplifyContext::new(&props).with_schema(df_schema.clone());
839 let simplifier =
840 datafusion::optimizer::simplify_expressions::ExprSimplifier::new(simplify_context);
841
842 let expr = simplifier.simplify(expr)?;
843 let expr = simplifier.coerce(expr, &df_schema)?;
844
845 Ok(expr)
846 }
847
848 pub fn create_physical_expr(&self, expr: &Expr) -> Result<Arc<dyn PhysicalExpr>> {
850 let df_schema = Arc::new(DFSchema::try_from(self.schema.as_ref().clone())?);
851
852 Ok(datafusion::physical_expr::create_physical_expr(
853 expr,
854 df_schema.as_ref(),
855 &Default::default(),
856 )?)
857 }
858
859 pub fn column_names_in_expr(expr: &Expr) -> Vec<String> {
863 let mut visitor = ColumnCapturingVisitor {
864 current_path: VecDeque::new(),
865 columns: BTreeSet::new(),
866 };
867 expr.visit(&mut visitor).unwrap();
868 visitor.columns.into_iter().collect()
869 }
870}
871
872struct ColumnCapturingVisitor {
873 current_path: VecDeque<String>,
875 columns: BTreeSet<String>,
876}
877
878impl TreeNodeVisitor<'_> for ColumnCapturingVisitor {
879 type Node = Expr;
880
881 fn f_down(&mut self, node: &Self::Node) -> DFResult<TreeNodeRecursion> {
882 match node {
883 Expr::Column(Column { name, .. }) => {
884 let mut path = name.clone();
885 for part in self.current_path.drain(..) {
886 path.push('.');
887 path.push_str(&part);
888 }
889 self.columns.insert(path);
890 self.current_path.clear();
891 }
892 Expr::ScalarFunction(udf) => {
893 if udf.name() == GetFieldFunc::default().name() {
894 if let Some(name) = get_as_string_scalar_opt(&udf.args[1]) {
895 self.current_path.push_front(name.to_string())
896 } else {
897 self.current_path.clear();
898 }
899 } else {
900 self.current_path.clear();
901 }
902 }
903 _ => {
904 self.current_path.clear();
905 }
906 }
907
908 Ok(TreeNodeRecursion::Continue)
909 }
910}
911
912#[cfg(test)]
913mod tests {
914
915 use crate::logical_expr::ExprExt;
916
917 use super::*;
918
919 use arrow::datatypes::Float64Type;
920 use arrow_array::{
921 ArrayRef, BooleanArray, Float32Array, Int32Array, Int64Array, RecordBatch, StringArray,
922 StructArray, TimestampMicrosecondArray, TimestampMillisecondArray,
923 TimestampNanosecondArray, TimestampSecondArray,
924 };
925 use arrow_schema::{DataType, Fields, Schema};
926 use datafusion::{
927 logical_expr::{lit, Cast},
928 prelude::{array_element, get_field},
929 };
930 use datafusion_functions::core::expr_ext::FieldAccessor;
931
932 #[test]
933 fn test_parse_filter_simple() {
934 let schema = Arc::new(Schema::new(vec![
935 Field::new("i", DataType::Int32, false),
936 Field::new("s", DataType::Utf8, true),
937 Field::new(
938 "st",
939 DataType::Struct(Fields::from(vec![
940 Field::new("x", DataType::Float32, false),
941 Field::new("y", DataType::Float32, false),
942 ])),
943 true,
944 ),
945 ]));
946
947 let planner = Planner::new(schema.clone());
948
949 let expected = col("i")
950 .gt(lit(3_i32))
951 .and(col("st").field_newstyle("x").lt_eq(lit(5.0_f32)))
952 .and(
953 col("s")
954 .eq(lit("str-4"))
955 .or(col("s").in_list(vec![lit("str-4"), lit("str-5")], false)),
956 );
957
958 let expr = planner
960 .parse_filter("i > 3 AND st.x <= 5.0 AND (s == 'str-4' OR s in ('str-4', 'str-5'))")
961 .unwrap();
962 assert_eq!(expr, expected);
963
964 let expr = planner
966 .parse_filter("i > 3 AND st.x <= 5.0 AND (s = 'str-4' OR s in ('str-4', 'str-5'))")
967 .unwrap();
968
969 let physical_expr = planner.create_physical_expr(&expr).unwrap();
970
971 let batch = RecordBatch::try_new(
972 schema,
973 vec![
974 Arc::new(Int32Array::from_iter_values(0..10)) as ArrayRef,
975 Arc::new(StringArray::from_iter_values(
976 (0..10).map(|v| format!("str-{}", v)),
977 )),
978 Arc::new(StructArray::from(vec![
979 (
980 Arc::new(Field::new("x", DataType::Float32, false)),
981 Arc::new(Float32Array::from_iter_values((0..10).map(|v| v as f32)))
982 as ArrayRef,
983 ),
984 (
985 Arc::new(Field::new("y", DataType::Float32, false)),
986 Arc::new(Float32Array::from_iter_values(
987 (0..10).map(|v| (v * 10) as f32),
988 )),
989 ),
990 ])),
991 ],
992 )
993 .unwrap();
994 let predicates = physical_expr.evaluate(&batch).unwrap();
995 assert_eq!(
996 predicates.into_array(0).unwrap().as_ref(),
997 &BooleanArray::from(vec![
998 false, false, false, false, true, true, false, false, false, false
999 ])
1000 );
1001 }
1002
1003 #[test]
1004 fn test_nested_col_refs() {
1005 let schema = Arc::new(Schema::new(vec![
1006 Field::new("s0", DataType::Utf8, true),
1007 Field::new(
1008 "st",
1009 DataType::Struct(Fields::from(vec![
1010 Field::new("s1", DataType::Utf8, true),
1011 Field::new(
1012 "st",
1013 DataType::Struct(Fields::from(vec![Field::new(
1014 "s2",
1015 DataType::Utf8,
1016 true,
1017 )])),
1018 true,
1019 ),
1020 ])),
1021 true,
1022 ),
1023 ]));
1024
1025 let planner = Planner::new(schema);
1026
1027 fn assert_column_eq(planner: &Planner, expr: &str, expected: &Expr) {
1028 let expr = planner.parse_filter(&format!("{expr} = 'val'")).unwrap();
1029 assert!(matches!(
1030 expr,
1031 Expr::BinaryExpr(BinaryExpr {
1032 left: _,
1033 op: Operator::Eq,
1034 right: _
1035 })
1036 ));
1037 if let Expr::BinaryExpr(BinaryExpr { left, .. }) = expr {
1038 assert_eq!(left.as_ref(), expected);
1039 }
1040 }
1041
1042 let expected = Expr::Column(Column::new_unqualified("s0"));
1043 assert_column_eq(&planner, "s0", &expected);
1044 assert_column_eq(&planner, "`s0`", &expected);
1045
1046 let expected = Expr::ScalarFunction(ScalarFunction {
1047 func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
1048 args: vec![
1049 Expr::Column(Column::new_unqualified("st")),
1050 Expr::Literal(ScalarValue::Utf8(Some("s1".to_string()))),
1051 ],
1052 });
1053 assert_column_eq(&planner, "st.s1", &expected);
1054 assert_column_eq(&planner, "`st`.`s1`", &expected);
1055 assert_column_eq(&planner, "st.`s1`", &expected);
1056
1057 let expected = Expr::ScalarFunction(ScalarFunction {
1058 func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
1059 args: vec![
1060 Expr::ScalarFunction(ScalarFunction {
1061 func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
1062 args: vec![
1063 Expr::Column(Column::new_unqualified("st")),
1064 Expr::Literal(ScalarValue::Utf8(Some("st".to_string()))),
1065 ],
1066 }),
1067 Expr::Literal(ScalarValue::Utf8(Some("s2".to_string()))),
1068 ],
1069 });
1070
1071 assert_column_eq(&planner, "st.st.s2", &expected);
1072 assert_column_eq(&planner, "`st`.`st`.`s2`", &expected);
1073 assert_column_eq(&planner, "st.st.`s2`", &expected);
1074 assert_column_eq(&planner, "st['st'][\"s2\"]", &expected);
1075 }
1076
1077 #[test]
1078 fn test_nested_list_refs() {
1079 let schema = Arc::new(Schema::new(vec![Field::new(
1080 "l",
1081 DataType::List(Arc::new(Field::new(
1082 "item",
1083 DataType::Struct(Fields::from(vec![Field::new("f1", DataType::Utf8, true)])),
1084 true,
1085 ))),
1086 true,
1087 )]));
1088
1089 let planner = Planner::new(schema);
1090
1091 let expected = array_element(col("l"), lit(0_i64));
1092 let expr = planner.parse_expr("l[0]").unwrap();
1093 assert_eq!(expr, expected);
1094
1095 let expected = get_field(array_element(col("l"), lit(0_i64)), "f1");
1096 let expr = planner.parse_expr("l[0]['f1']").unwrap();
1097 assert_eq!(expr, expected);
1098
1099 }
1104
1105 #[test]
1106 fn test_negative_expressions() {
1107 let schema = Arc::new(Schema::new(vec![Field::new("x", DataType::Int64, false)]));
1108
1109 let planner = Planner::new(schema.clone());
1110
1111 let expected = col("x")
1112 .gt(lit(-3_i64))
1113 .and(col("x").lt(-(lit(-5_i64) + lit(3_i64))));
1114
1115 let expr = planner.parse_filter("x > -3 AND x < -(-5 + 3)").unwrap();
1116
1117 assert_eq!(expr, expected);
1118
1119 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1120
1121 let batch = RecordBatch::try_new(
1122 schema,
1123 vec![Arc::new(Int64Array::from_iter_values(-5..5)) as ArrayRef],
1124 )
1125 .unwrap();
1126 let predicates = physical_expr.evaluate(&batch).unwrap();
1127 assert_eq!(
1128 predicates.into_array(0).unwrap().as_ref(),
1129 &BooleanArray::from(vec![
1130 false, false, false, true, true, true, true, false, false, false
1131 ])
1132 );
1133 }
1134
1135 #[test]
1136 fn test_negative_array_expressions() {
1137 let schema = Arc::new(Schema::new(vec![Field::new("x", DataType::Int64, false)]));
1138
1139 let planner = Planner::new(schema);
1140
1141 let expected = Expr::Literal(ScalarValue::List(Arc::new(
1142 ListArray::from_iter_primitive::<Float64Type, _, _>(vec![Some(
1143 [-1_f64, -2.0, -3.0, -4.0, -5.0].map(Some),
1144 )]),
1145 )));
1146
1147 let expr = planner
1148 .parse_expr("[-1.0, -2.0, -3.0, -4.0, -5.0]")
1149 .unwrap();
1150
1151 assert_eq!(expr, expected);
1152 }
1153
1154 #[test]
1155 fn test_sql_like() {
1156 let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
1157
1158 let planner = Planner::new(schema.clone());
1159
1160 let expected = col("s").like(lit("str-4"));
1161 let expr = planner.parse_filter("s LIKE 'str-4'").unwrap();
1163 assert_eq!(expr, expected);
1164 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1165
1166 let batch = RecordBatch::try_new(
1167 schema,
1168 vec![Arc::new(StringArray::from_iter_values(
1169 (0..10).map(|v| format!("str-{}", v)),
1170 ))],
1171 )
1172 .unwrap();
1173 let predicates = physical_expr.evaluate(&batch).unwrap();
1174 assert_eq!(
1175 predicates.into_array(0).unwrap().as_ref(),
1176 &BooleanArray::from(vec![
1177 false, false, false, false, true, false, false, false, false, false
1178 ])
1179 );
1180 }
1181
1182 #[test]
1183 fn test_not_like() {
1184 let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
1185
1186 let planner = Planner::new(schema.clone());
1187
1188 let expected = col("s").not_like(lit("str-4"));
1189 let expr = planner.parse_filter("s NOT LIKE 'str-4'").unwrap();
1191 assert_eq!(expr, expected);
1192 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1193
1194 let batch = RecordBatch::try_new(
1195 schema,
1196 vec![Arc::new(StringArray::from_iter_values(
1197 (0..10).map(|v| format!("str-{}", v)),
1198 ))],
1199 )
1200 .unwrap();
1201 let predicates = physical_expr.evaluate(&batch).unwrap();
1202 assert_eq!(
1203 predicates.into_array(0).unwrap().as_ref(),
1204 &BooleanArray::from(vec![
1205 true, true, true, true, false, true, true, true, true, true
1206 ])
1207 );
1208 }
1209
1210 #[test]
1211 fn test_sql_is_in() {
1212 let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
1213
1214 let planner = Planner::new(schema.clone());
1215
1216 let expected = col("s").in_list(vec![lit("str-4"), lit("str-5")], false);
1217 let expr = planner.parse_filter("s IN ('str-4', 'str-5')").unwrap();
1219 assert_eq!(expr, expected);
1220 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1221
1222 let batch = RecordBatch::try_new(
1223 schema,
1224 vec![Arc::new(StringArray::from_iter_values(
1225 (0..10).map(|v| format!("str-{}", v)),
1226 ))],
1227 )
1228 .unwrap();
1229 let predicates = physical_expr.evaluate(&batch).unwrap();
1230 assert_eq!(
1231 predicates.into_array(0).unwrap().as_ref(),
1232 &BooleanArray::from(vec![
1233 false, false, false, false, true, true, false, false, false, false
1234 ])
1235 );
1236 }
1237
1238 #[test]
1239 fn test_sql_is_null() {
1240 let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
1241
1242 let planner = Planner::new(schema.clone());
1243
1244 let expected = col("s").is_null();
1245 let expr = planner.parse_filter("s IS NULL").unwrap();
1246 assert_eq!(expr, expected);
1247 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1248
1249 let batch = RecordBatch::try_new(
1250 schema,
1251 vec![Arc::new(StringArray::from_iter((0..10).map(|v| {
1252 if v % 3 == 0 {
1253 Some(format!("str-{}", v))
1254 } else {
1255 None
1256 }
1257 })))],
1258 )
1259 .unwrap();
1260 let predicates = physical_expr.evaluate(&batch).unwrap();
1261 assert_eq!(
1262 predicates.into_array(0).unwrap().as_ref(),
1263 &BooleanArray::from(vec![
1264 false, true, true, false, true, true, false, true, true, false
1265 ])
1266 );
1267
1268 let expr = planner.parse_filter("s IS NOT NULL").unwrap();
1269 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1270 let predicates = physical_expr.evaluate(&batch).unwrap();
1271 assert_eq!(
1272 predicates.into_array(0).unwrap().as_ref(),
1273 &BooleanArray::from(vec![
1274 true, false, false, true, false, false, true, false, false, true,
1275 ])
1276 );
1277 }
1278
1279 #[test]
1280 fn test_sql_invert() {
1281 let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Boolean, true)]));
1282
1283 let planner = Planner::new(schema.clone());
1284
1285 let expr = planner.parse_filter("NOT s").unwrap();
1286 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1287
1288 let batch = RecordBatch::try_new(
1289 schema,
1290 vec![Arc::new(BooleanArray::from_iter(
1291 (0..10).map(|v| Some(v % 3 == 0)),
1292 ))],
1293 )
1294 .unwrap();
1295 let predicates = physical_expr.evaluate(&batch).unwrap();
1296 assert_eq!(
1297 predicates.into_array(0).unwrap().as_ref(),
1298 &BooleanArray::from(vec![
1299 false, true, true, false, true, true, false, true, true, false
1300 ])
1301 );
1302 }
1303
1304 #[test]
1305 fn test_sql_cast() {
1306 let cases = &[
1307 (
1308 "x = cast('2021-01-01 00:00:00' as timestamp)",
1309 ArrowDataType::Timestamp(TimeUnit::Microsecond, None),
1310 ),
1311 (
1312 "x = cast('2021-01-01 00:00:00' as timestamp(0))",
1313 ArrowDataType::Timestamp(TimeUnit::Second, None),
1314 ),
1315 (
1316 "x = cast('2021-01-01 00:00:00.123' as timestamp(9))",
1317 ArrowDataType::Timestamp(TimeUnit::Nanosecond, None),
1318 ),
1319 (
1320 "x = cast('2021-01-01 00:00:00.123' as datetime(9))",
1321 ArrowDataType::Timestamp(TimeUnit::Nanosecond, None),
1322 ),
1323 ("x = cast('2021-01-01' as date)", ArrowDataType::Date32),
1324 (
1325 "x = cast('1.238' as decimal(9,3))",
1326 ArrowDataType::Decimal128(9, 3),
1327 ),
1328 ("x = cast(1 as float)", ArrowDataType::Float32),
1329 ("x = cast(1 as double)", ArrowDataType::Float64),
1330 ("x = cast(1 as tinyint)", ArrowDataType::Int8),
1331 ("x = cast(1 as smallint)", ArrowDataType::Int16),
1332 ("x = cast(1 as int)", ArrowDataType::Int32),
1333 ("x = cast(1 as integer)", ArrowDataType::Int32),
1334 ("x = cast(1 as bigint)", ArrowDataType::Int64),
1335 ("x = cast(1 as tinyint unsigned)", ArrowDataType::UInt8),
1336 ("x = cast(1 as smallint unsigned)", ArrowDataType::UInt16),
1337 ("x = cast(1 as int unsigned)", ArrowDataType::UInt32),
1338 ("x = cast(1 as integer unsigned)", ArrowDataType::UInt32),
1339 ("x = cast(1 as bigint unsigned)", ArrowDataType::UInt64),
1340 ("x = cast(1 as boolean)", ArrowDataType::Boolean),
1341 ("x = cast(1 as string)", ArrowDataType::Utf8),
1342 ];
1343
1344 for (sql, expected_data_type) in cases {
1345 let schema = Arc::new(Schema::new(vec![Field::new(
1346 "x",
1347 expected_data_type.clone(),
1348 true,
1349 )]));
1350 let planner = Planner::new(schema.clone());
1351 let expr = planner.parse_filter(sql).unwrap();
1352
1353 let expected_value_str = sql
1355 .split("cast(")
1356 .nth(1)
1357 .unwrap()
1358 .split(" as")
1359 .next()
1360 .unwrap();
1361 let expected_value_str = expected_value_str.trim_matches('\'');
1363
1364 match expr {
1365 Expr::BinaryExpr(BinaryExpr { right, .. }) => match right.as_ref() {
1366 Expr::Cast(Cast { expr, data_type }) => {
1367 match expr.as_ref() {
1368 Expr::Literal(ScalarValue::Utf8(Some(value_str))) => {
1369 assert_eq!(value_str, expected_value_str);
1370 }
1371 Expr::Literal(ScalarValue::Int64(Some(value))) => {
1372 assert_eq!(*value, 1);
1373 }
1374 _ => panic!("Expected cast to be applied to literal"),
1375 }
1376 assert_eq!(data_type, expected_data_type);
1377 }
1378 _ => panic!("Expected right to be a cast"),
1379 },
1380 _ => panic!("Expected binary expression"),
1381 }
1382 }
1383 }
1384
1385 #[test]
1386 fn test_sql_literals() {
1387 let cases = &[
1388 (
1389 "x = timestamp '2021-01-01 00:00:00'",
1390 ArrowDataType::Timestamp(TimeUnit::Microsecond, None),
1391 ),
1392 (
1393 "x = timestamp(0) '2021-01-01 00:00:00'",
1394 ArrowDataType::Timestamp(TimeUnit::Second, None),
1395 ),
1396 (
1397 "x = timestamp(9) '2021-01-01 00:00:00.123'",
1398 ArrowDataType::Timestamp(TimeUnit::Nanosecond, None),
1399 ),
1400 ("x = date '2021-01-01'", ArrowDataType::Date32),
1401 ("x = decimal(9,3) '1.238'", ArrowDataType::Decimal128(9, 3)),
1402 ];
1403
1404 for (sql, expected_data_type) in cases {
1405 let schema = Arc::new(Schema::new(vec![Field::new(
1406 "x",
1407 expected_data_type.clone(),
1408 true,
1409 )]));
1410 let planner = Planner::new(schema.clone());
1411 let expr = planner.parse_filter(sql).unwrap();
1412
1413 let expected_value_str = sql.split('\'').nth(1).unwrap();
1414
1415 match expr {
1416 Expr::BinaryExpr(BinaryExpr { right, .. }) => match right.as_ref() {
1417 Expr::Cast(Cast { expr, data_type }) => {
1418 match expr.as_ref() {
1419 Expr::Literal(ScalarValue::Utf8(Some(value_str))) => {
1420 assert_eq!(value_str, expected_value_str);
1421 }
1422 _ => panic!("Expected cast to be applied to literal"),
1423 }
1424 assert_eq!(data_type, expected_data_type);
1425 }
1426 _ => panic!("Expected right to be a cast"),
1427 },
1428 _ => panic!("Expected binary expression"),
1429 }
1430 }
1431 }
1432
1433 #[test]
1434 fn test_sql_array_literals() {
1435 let cases = [
1436 (
1437 "x = [1, 2, 3]",
1438 ArrowDataType::List(Arc::new(Field::new("item", ArrowDataType::Int64, true))),
1439 ),
1440 (
1441 "x = [1, 2, 3]",
1442 ArrowDataType::FixedSizeList(
1443 Arc::new(Field::new("item", ArrowDataType::Int64, true)),
1444 3,
1445 ),
1446 ),
1447 ];
1448
1449 for (sql, expected_data_type) in cases {
1450 let schema = Arc::new(Schema::new(vec![Field::new(
1451 "x",
1452 expected_data_type.clone(),
1453 true,
1454 )]));
1455 let planner = Planner::new(schema.clone());
1456 let expr = planner.parse_filter(sql).unwrap();
1457 let expr = planner.optimize_expr(expr).unwrap();
1458
1459 match expr {
1460 Expr::BinaryExpr(BinaryExpr { right, .. }) => match right.as_ref() {
1461 Expr::Literal(value) => {
1462 assert_eq!(&value.data_type(), &expected_data_type);
1463 }
1464 _ => panic!("Expected right to be a literal"),
1465 },
1466 _ => panic!("Expected binary expression"),
1467 }
1468 }
1469 }
1470
1471 #[test]
1472 fn test_sql_between() {
1473 use arrow_array::{Float64Array, Int32Array, TimestampMicrosecondArray};
1474 use arrow_schema::{DataType, Field, Schema, TimeUnit};
1475 use std::sync::Arc;
1476
1477 let schema = Arc::new(Schema::new(vec![
1478 Field::new("x", DataType::Int32, false),
1479 Field::new("y", DataType::Float64, false),
1480 Field::new(
1481 "ts",
1482 DataType::Timestamp(TimeUnit::Microsecond, None),
1483 false,
1484 ),
1485 ]));
1486
1487 let planner = Planner::new(schema.clone());
1488
1489 let expr = planner
1491 .parse_filter("x BETWEEN CAST(3 AS INT) AND CAST(7 AS INT)")
1492 .unwrap();
1493 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1494
1495 let base_ts = 1704067200000000_i64; let ts_array = TimestampMicrosecondArray::from_iter_values(
1499 (0..10).map(|i| base_ts + i * 1_000_000), );
1501
1502 let batch = RecordBatch::try_new(
1503 schema,
1504 vec![
1505 Arc::new(Int32Array::from_iter_values(0..10)) as ArrayRef,
1506 Arc::new(Float64Array::from_iter_values((0..10).map(|v| v as f64))),
1507 Arc::new(ts_array),
1508 ],
1509 )
1510 .unwrap();
1511
1512 let predicates = physical_expr.evaluate(&batch).unwrap();
1513 assert_eq!(
1514 predicates.into_array(0).unwrap().as_ref(),
1515 &BooleanArray::from(vec![
1516 false, false, false, true, true, true, true, true, false, false
1517 ])
1518 );
1519
1520 let expr = planner
1522 .parse_filter("x NOT BETWEEN CAST(3 AS INT) AND CAST(7 AS INT)")
1523 .unwrap();
1524 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1525
1526 let predicates = physical_expr.evaluate(&batch).unwrap();
1527 assert_eq!(
1528 predicates.into_array(0).unwrap().as_ref(),
1529 &BooleanArray::from(vec![
1530 true, true, true, false, false, false, false, false, true, true
1531 ])
1532 );
1533
1534 let expr = planner.parse_filter("y BETWEEN 2.5 AND 6.5").unwrap();
1536 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1537
1538 let predicates = physical_expr.evaluate(&batch).unwrap();
1539 assert_eq!(
1540 predicates.into_array(0).unwrap().as_ref(),
1541 &BooleanArray::from(vec![
1542 false, false, false, true, true, true, true, false, false, false
1543 ])
1544 );
1545
1546 let expr = planner
1548 .parse_filter(
1549 "ts BETWEEN timestamp '2024-01-01 00:00:03' AND timestamp '2024-01-01 00:00:07'",
1550 )
1551 .unwrap();
1552 let physical_expr = planner.create_physical_expr(&expr).unwrap();
1553
1554 let predicates = physical_expr.evaluate(&batch).unwrap();
1555 assert_eq!(
1556 predicates.into_array(0).unwrap().as_ref(),
1557 &BooleanArray::from(vec![
1558 false, false, false, true, true, true, true, true, false, false
1559 ])
1560 );
1561 }
1562
1563 #[test]
1564 fn test_sql_comparison() {
1565 let batch: Vec<(&str, ArrayRef)> = vec![
1567 (
1568 "timestamp_s",
1569 Arc::new(TimestampSecondArray::from_iter_values(0..10)),
1570 ),
1571 (
1572 "timestamp_ms",
1573 Arc::new(TimestampMillisecondArray::from_iter_values(0..10)),
1574 ),
1575 (
1576 "timestamp_us",
1577 Arc::new(TimestampMicrosecondArray::from_iter_values(0..10)),
1578 ),
1579 (
1580 "timestamp_ns",
1581 Arc::new(TimestampNanosecondArray::from_iter_values(4995..5005)),
1582 ),
1583 ];
1584 let batch = RecordBatch::try_from_iter(batch).unwrap();
1585
1586 let planner = Planner::new(batch.schema());
1587
1588 let expressions = &[
1590 "timestamp_s >= TIMESTAMP '1970-01-01 00:00:05'",
1591 "timestamp_ms >= TIMESTAMP '1970-01-01 00:00:00.005'",
1592 "timestamp_us >= TIMESTAMP '1970-01-01 00:00:00.000005'",
1593 "timestamp_ns >= TIMESTAMP '1970-01-01 00:00:00.000005'",
1594 ];
1595
1596 let expected: ArrayRef = Arc::new(BooleanArray::from_iter(
1597 std::iter::repeat_n(Some(false), 5).chain(std::iter::repeat_n(Some(true), 5)),
1598 ));
1599 for expression in expressions {
1600 let logical_expr = planner.parse_filter(expression).unwrap();
1602 let logical_expr = planner.optimize_expr(logical_expr).unwrap();
1603 let physical_expr = planner.create_physical_expr(&logical_expr).unwrap();
1604
1605 let result = physical_expr.evaluate(&batch).unwrap();
1607 let result = result.into_array(batch.num_rows()).unwrap();
1608 assert_eq!(&expected, &result, "unexpected result for {}", expression);
1609 }
1610 }
1611
1612 #[test]
1613 fn test_columns_in_expr() {
1614 let expr = col("s0").gt(lit("value")).and(
1615 col("st")
1616 .field("st")
1617 .field("s2")
1618 .eq(lit("value"))
1619 .or(col("st")
1620 .field("s1")
1621 .in_list(vec![lit("value 1"), lit("value 2")], false)),
1622 );
1623
1624 let columns = Planner::column_names_in_expr(&expr);
1625 assert_eq!(columns, vec!["s0", "st.s1", "st.st.s2"]);
1626 }
1627
1628 #[test]
1629 fn test_parse_binary_expr() {
1630 let bin_str = "x'616263'";
1631
1632 let schema = Arc::new(Schema::new(vec![Field::new(
1633 "binary",
1634 DataType::Binary,
1635 true,
1636 )]));
1637 let planner = Planner::new(schema);
1638 let expr = planner.parse_expr(bin_str).unwrap();
1639 assert_eq!(
1640 expr,
1641 Expr::Literal(ScalarValue::Binary(Some(vec![b'a', b'b', b'c'])))
1642 );
1643 }
1644
1645 #[test]
1646 fn test_lance_context_provider_expr_planners() {
1647 let ctx_provider = LanceContextProvider::default();
1648 assert!(!ctx_provider.get_expr_planners().is_empty());
1649 }
1650}