1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
use crate::active_messaging::RemotePtr;
use crate::array::{LamellarRead, LamellarWrite};
use crate::darc::Darc;
use crate::lamellae::AllocationType;
use crate::{memregion::*, LamellarEnv, LamellarTeam};

// use crate::active_messaging::AmDist;
use core::marker::PhantomData;
// use serde::ser::Serialize;
use std::pin::Pin;
use std::sync::Arc;

use std::ops::Bound;

/// A Shared Memory Region is a [RemoteMemoryRegion] that has only been allocated on multiple PEs.
///
/// The memory region provides RDMA access to any PE which has a handle to the region.
///
/// SharedMemoryRegions implement distributed reference counting, so their handles can be sent along in active messages
/// to other Remote PE's, and it is gauranteed that the memory regions on each PE will remain valid as long as a single reference
/// exists on any PE anywhere in the distributed system (even if the original allocating PEs drops all local references to the memory region)
///
/// SharedMemoryRegions are constructed using either the LamellarWorld instance or a LamellarTeam instance.
///
/// Memory Regions are low-level unsafe abstraction not really intended for use in higher-level applications
///
/// # Warning
/// Unless you are very confident in low level distributed memory access it is highly recommended you utilize the
/// [LamellarArray][crate::array::LamellarArray]  interface to construct and interact with distributed memory.
///
/// # Examples
///
///
///```
/// use lamellar::memregion::prelude::*;
///
/// let world = LamellarWorldBuilder::new().build();
///
/// let world_mem_region: SharedMemoryRegion<usize> = world.alloc_shared_mem_region(1000);
/// ```
#[derive(serde::Serialize, serde::Deserialize, Clone)]
pub struct SharedMemoryRegion<T: Dist> {
    pub(crate) mr: Darc<MemoryRegion<u8>>,
    sub_region_offset: usize,
    sub_region_size: usize,
    phantom: PhantomData<T>,
}

impl<T: Dist> LamellarEnv for SharedMemoryRegion<T> {
    fn my_pe(&self) -> usize {
        self.mr.team().my_pe()
    }
    fn num_pes(&self) -> usize {
        self.mr.team().num_pes()
    }
    fn num_threads_per_pe(&self) -> usize {
        self.mr.team().num_threads_per_pe()
    }
    fn world(&self) -> Arc<LamellarTeam> {
        self.mr.team().world()
    }
    fn team(&self) -> Arc<LamellarTeam> {
        self.mr.team().team()
    }
}

impl<T: Dist> crate::active_messaging::DarcSerde for SharedMemoryRegion<T> {
    fn ser(&self, num_pes: usize, darcs: &mut Vec<RemotePtr>) {
        // println!("in shared ser");
        self.mr.serialize_update_cnts(num_pes);
        darcs.push(RemotePtr::NetworkDarc(self.mr.clone().into()));
    }
    fn des(&self, cur_pe: Result<usize, crate::IdError>) {
        // println!("in shared des");
        match cur_pe {
            Ok(_) => {
                self.mr.deserialize_update_cnts();
            }
            Err(err) => {
                panic!("can only access darcs within team members ({:?})", err);
            }
        }
        // self.mr.print();
    }
}

impl<T: Dist> SharedMemoryRegion<T> {
    pub(crate) fn new(
        size: usize,
        team: Pin<Arc<LamellarTeamRT>>,
        alloc: AllocationType,
    ) -> SharedMemoryRegion<T> {
        SharedMemoryRegion::try_new(size, team, alloc).expect("Out of memory")
    }

    pub(crate) fn try_new(
        size: usize,
        team: Pin<Arc<LamellarTeamRT>>,
        alloc: AllocationType,
    ) -> Result<SharedMemoryRegion<T>, anyhow::Error> {
        // println!("creating new shared mem region {:?} {:?}",size,alloc);
        Ok(SharedMemoryRegion {
            mr: Darc::try_new(
                team.clone(),
                MemoryRegion::try_new(
                    size * std::mem::size_of::<T>(),
                    team.lamellae.clone(),
                    alloc,
                )?,
                crate::darc::DarcMode::Darc,
            )
            .expect("memregions can only be created on a member of the team"),
            sub_region_offset: 0,
            sub_region_size: size,
            phantom: PhantomData,
        })
    }
}

// This could be useful for if we want to transfer the actual data instead of the pointer
// impl<T: Dist + serde::Serialize> SharedMemoryRegion<T> {
//     pub(crate) fn serialize_local_data<S>(&self, s: S) -> Result<S::Ok, S::Error>
//     where
//         S: serde::Serializer,
//     {
//         unsafe { self.as_slice().unwrap().serialize(s) }
//     }
// }

//account for subregion stuff
impl<T: Dist> RegisteredMemoryRegion<T> for SharedMemoryRegion<T> {
    fn len(&self) -> usize {
        self.sub_region_size
    }
    fn addr(&self) -> MemResult<usize> {
        if let Ok(addr) = self.mr.addr() {
            Ok(addr + self.sub_region_offset * std::mem::size_of::<T>())
        } else {
            Err(MemNotLocalError {})
        }
    }
    unsafe fn at(&self, index: usize) -> MemResult<&T> {
        self.mr.casted_at::<T>(index)
    }
    unsafe fn as_slice(&self) -> MemResult<&[T]> {
        if let Ok(slice) = self.mr.as_casted_slice::<T>() {
            Ok(&slice[self.sub_region_offset..(self.sub_region_offset + self.sub_region_size)])
        } else {
            Err(MemNotLocalError {})
        }
    }
    unsafe fn as_mut_slice(&self) -> MemResult<&mut [T]> {
        if let Ok(slice) = self.mr.as_casted_mut_slice::<T>() {
            Ok(&mut slice[self.sub_region_offset..(self.sub_region_offset + self.sub_region_size)])
        } else {
            Err(MemNotLocalError {})
        }
    }
    unsafe fn as_ptr(&self) -> MemResult<*const T> {
        if let Ok(addr) = self.addr() {
            Ok(addr as *const T)
        } else {
            Err(MemNotLocalError {})
        }
    }
    unsafe fn as_mut_ptr(&self) -> MemResult<*mut T> {
        if let Ok(addr) = self.addr() {
            Ok(addr as *mut T)
        } else {
            Err(MemNotLocalError {})
        }
    }
}

impl<T: Dist> MemRegionId for SharedMemoryRegion<T> {
    fn id(&self) -> usize {
        self.mr.id()
    }
}

impl<T: Dist> SubRegion<T> for SharedMemoryRegion<T> {
    type Region = SharedMemoryRegion<T>;
    fn sub_region<R: std::ops::RangeBounds<usize>>(&self, range: R) -> Self::Region {
        let start = match range.start_bound() {
            //inclusive
            Bound::Included(idx) => *idx,
            Bound::Excluded(idx) => *idx + 1,
            Bound::Unbounded => 0,
        };
        let end = match range.end_bound() {
            //exclusive
            Bound::Included(idx) => *idx + 1,
            Bound::Excluded(idx) => *idx,
            Bound::Unbounded => self.sub_region_size,
        };
        if end > self.sub_region_size {
            panic!(
                "subregion range ({:?}-{:?}) exceeds size of memregion {:?}",
                start, end, self.sub_region_size
            );
        }
        // println!("shared subregion: {:?} {:?} {:?}",start,end,(end-start));
        SharedMemoryRegion {
            mr: self.mr.clone(),
            sub_region_offset: self.sub_region_offset + start,
            sub_region_size: (end - start),
            phantom: PhantomData,
        }
    }
}

impl<T: Dist> AsBase for SharedMemoryRegion<T> {
    unsafe fn to_base<B: Dist>(self) -> LamellarMemoryRegion<B> {
        let u8_offset = self.sub_region_offset * std::mem::size_of::<T>();
        let u8_size = self.sub_region_size * std::mem::size_of::<T>();
        // println!("to_base");
        SharedMemoryRegion {
            mr: self.mr.clone(),
            sub_region_offset: u8_offset / std::mem::size_of::<B>(),
            sub_region_size: u8_size / std::mem::size_of::<B>(),
            phantom: PhantomData,
        }
        .into()
    }
}

impl<T: Dist> MemoryRegionRDMA<T> for SharedMemoryRegion<T> {
    unsafe fn put<U: Into<LamellarMemoryRegion<T>>>(&self, pe: usize, index: usize, data: U) {
        self.mr.put(pe, self.sub_region_offset + index, data);
    }
    unsafe fn blocking_put<U: Into<LamellarMemoryRegion<T>>>(
        &self,
        pe: usize,
        index: usize,
        data: U,
    ) {
        self.mr
            .blocking_put(pe, self.sub_region_offset + index, data);
    }
    unsafe fn put_all<U: Into<LamellarMemoryRegion<T>>>(&self, index: usize, data: U) {
        self.mr.put_all(self.sub_region_offset + index, data);
    }
    unsafe fn get_unchecked<U: Into<LamellarMemoryRegion<T>>>(
        &self,
        pe: usize,
        index: usize,
        data: U,
    ) {
        self.mr
            .get_unchecked(pe, self.sub_region_offset + index, data);
    }
    unsafe fn blocking_get<U: Into<LamellarMemoryRegion<T>>>(
        &self,
        pe: usize,
        index: usize,
        data: U,
    ) {
        self.mr
            .blocking_get(pe, self.sub_region_offset + index, data);
    }
}

impl<T: Dist> RTMemoryRegionRDMA<T> for SharedMemoryRegion<T> {
    unsafe fn put_slice(&self, pe: usize, index: usize, data: &[T]) {
        self.mr.put_slice(pe, self.sub_region_offset + index, data)
    }
    unsafe fn blocking_get_slice(&self, pe: usize, index: usize, data: &mut [T]) {
        // println!("iget_slice {:?} {:?}",pe,self.sub_region_offset + index);
        self.mr
            .blocking_get_slice(pe, self.sub_region_offset + index, data)
    }
}

impl<T: Dist> std::fmt::Debug for SharedMemoryRegion<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "[{:?}] shared mem region:  {:?} ", self.mr.pe, self.mr,)
    }
}

impl<T: Dist> LamellarWrite for SharedMemoryRegion<T> {}
impl<T: Dist> LamellarRead for SharedMemoryRegion<T> {}

impl<T: Dist> From<&SharedMemoryRegion<T>> for LamellarMemoryRegion<T> {
    fn from(smr: &SharedMemoryRegion<T>) -> Self {
        LamellarMemoryRegion::Shared(smr.clone())
    }
}

impl<T: Dist> From<&SharedMemoryRegion<T>> for LamellarArrayRdmaOutput<T> {
    fn from(smr: &SharedMemoryRegion<T>) -> Self {
        // println!("from");
        LamellarArrayRdmaOutput::SharedMemRegion(smr.clone())
    }
}

impl<T: Dist> TeamFrom<&SharedMemoryRegion<T>> for LamellarArrayRdmaOutput<T> {
    fn team_from(smr: &SharedMemoryRegion<T>, _team: &std::pin::Pin<Arc<LamellarTeamRT>>) -> Self {
        LamellarArrayRdmaOutput::SharedMemRegion(smr.clone())
    }
}

impl<T: Dist> From<&SharedMemoryRegion<T>> for LamellarArrayRdmaInput<T> {
    fn from(smr: &SharedMemoryRegion<T>) -> Self {
        // println!("from");
        LamellarArrayRdmaInput::SharedMemRegion(smr.clone())
    }
}

impl<T: Dist> TeamFrom<&SharedMemoryRegion<T>> for LamellarArrayRdmaInput<T> {
    fn team_from(smr: &SharedMemoryRegion<T>, _team: &std::pin::Pin<Arc<LamellarTeamRT>>) -> Self {
        LamellarArrayRdmaInput::SharedMemRegion(smr.clone())
    }
}

// impl<T: Dist> Drop for SharedMemoryRegion<T> {
//     fn drop(&mut self) {
//         println!("dropping shared memory region");
//     }
// }