1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
use crate::field::{element::FieldElement, traits::IsFFTField};
/// In-Place Radix-2 NR DIT FFT algorithm over a slice of two-adic field elements.
/// It's required that the twiddle factors are in bit-reverse order. Else this function will not
/// return fourier transformed values.
/// Also the input size needs to be a power of two.
/// It's recommended to use the current safe abstractions instead of this function.
///
/// Performs a fast fourier transform with the next attributes:
/// - In-Place: an auxiliary vector of data isn't needed for the algorithm.
/// - Radix-2: the algorithm halves the problem size log(n) times.
/// - NR: natural to reverse order, meaning that the input is naturally ordered and the output will
/// be bit-reversed ordered.
/// - DIT: decimation in time
pub fn in_place_nr_2radix_fft<F>(input: &mut [FieldElement<F>], twiddles: &[FieldElement<F>])
where
F: IsFFTField,
{
// divide input in groups, starting with 1, duplicating the number of groups in each stage.
let mut group_count = 1;
let mut group_size = input.len();
// for each group, there'll be group_size / 2 butterflies.
// a butterfly is the atomic operation of a FFT, e.g: (a, b) = (a + wb, a - wb).
// The 0.5 factor is what gives FFT its performance, it recursively halves the problem size
// (group size).
while group_count < input.len() {
#[allow(clippy::needless_range_loop)] // the suggestion would obfuscate a bit the algorithm
for group in 0..group_count {
let first_in_group = group * group_size;
let first_in_next_group = first_in_group + group_size / 2;
let w = &twiddles[group]; // a twiddle factor is used per group
for i in first_in_group..first_in_next_group {
let wi = w * &input[i + group_size / 2];
let y0 = &input[i] + &wi;
let y1 = &input[i] - &wi;
input[i] = y0;
input[i + group_size / 2] = y1;
}
}
group_count *= 2;
group_size /= 2;
}
}
/// In-Place Radix-2 RN DIT FFT algorithm over a slice of two-adic field elements.
/// It's required that the twiddle factors are naturally ordered (so w[i] = w^i). Else this
/// function will not return fourier transformed values.
/// Also the input size needs to be a power of two.
/// It's recommended to use the current safe abstractions instead of this function.
///
/// Performs a fast fourier transform with the next attributes:
/// - In-Place: an auxiliary vector of data isn't needed for storing the results.
/// - Radix-2: the algorithm halves the problem size log(n) times.
/// - RN: reverse to natural order, meaning that the input is bit-reversed ordered and the output will
/// be naturally ordered.
/// - DIT: decimation in time
#[allow(dead_code)]
pub fn in_place_rn_2radix_fft<F>(input: &mut [FieldElement<F>], twiddles: &[FieldElement<F>])
where
F: IsFFTField,
{
// divide input in groups, starting with 1, duplicating the number of groups in each stage.
let mut group_count = 1;
let mut group_size = input.len();
// for each group, there'll be group_size / 2 butterflies.
// a butterfly is the atomic operation of a FFT, e.g: (a, b) = (a + wb, a - wb).
// The 0.5 factor is what gives FFT its performance, it recursively halves the problem size
// (group size).
while group_count < input.len() {
let step_to_next = 2 * group_count; // next butterfly in the group
let step_to_last = step_to_next * (group_size / 2 - 1);
for group in 0..group_count {
let w = &twiddles[group * group_size / 2];
for i in (group..=group + step_to_last).step_by(step_to_next) {
let wi = w * &input[i + group_count];
let y0 = &input[i] + &wi;
let y1 = &input[i] - &wi;
input[i] = y0;
input[i + group_count] = y1;
}
}
group_count *= 2;
group_size /= 2;
}
}
#[cfg(test)]
mod tests {
use crate::fft::test_helpers::naive_matrix_dft_test;
use crate::fft::{bit_reversing::in_place_bit_reverse_permute, roots_of_unity::get_twiddles};
use crate::field::{test_fields::u64_test_field::U64TestField, traits::RootsConfig};
use proptest::{collection, prelude::*};
use super::*;
type F = U64TestField;
type FE = FieldElement<F>;
prop_compose! {
fn powers_of_two(max_exp: u8)(exp in 1..max_exp) -> usize { 1 << exp }
// max_exp cannot be multiple of the bits that represent a usize, generally 64 or 32.
// also it can't exceed the test field's two-adicity.
}
prop_compose! {
fn field_element()(num in any::<u64>().prop_filter("Avoid null coefficients", |x| x != &0)) -> FE {
FE::from(num)
}
}
prop_compose! {
fn field_vec(max_exp: u8)(vec in collection::vec(field_element(), 2..1<<max_exp).prop_filter("Avoid polynomials of size not power of two", |vec| vec.len().is_power_of_two())) -> Vec<FE> {
vec
}
}
proptest! {
// Property-based test that ensures NR Radix-2 FFT gives the same result as a naive DFT.
#[test]
fn test_nr_2radix_fft_matches_naive_eval(coeffs in field_vec(8)) {
let expected = naive_matrix_dft_test(&coeffs);
let order = coeffs.len().trailing_zeros();
let twiddles = get_twiddles(order.into(), RootsConfig::BitReverse).unwrap();
let mut result = coeffs;
in_place_nr_2radix_fft(&mut result, &twiddles);
in_place_bit_reverse_permute(&mut result);
prop_assert_eq!(expected, result);
}
// Property-based test that ensures RN Radix-2 FFT gives the same result as a naive DFT.
#[test]
fn test_rn_2radix_fft_matches_naive_eval(coeffs in field_vec(8)) {
let expected = naive_matrix_dft_test(&coeffs);
let order = coeffs.len().trailing_zeros();
let twiddles = get_twiddles(order.into(), RootsConfig::Natural).unwrap();
let mut result = coeffs;
in_place_bit_reverse_permute(&mut result);
in_place_rn_2radix_fft(&mut result, &twiddles);
prop_assert_eq!(result, expected);
}
}
}