1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
use crate::{
    boolean::{And, False, True},
    define,
    primitives::{Composed, Constant, Identity},
    Function,
};

/// Church numeral for zero.
pub type Zero = crate::primitives::SecondOf;

define! {
    /// Successor function. Returns a number plus one.
    /// ```text
    /// λn.λf.λx.f(nfx)
    /// ```
    pub fn Successor ::= {
        N. F. X. { F, { N, F, X }}
    } where
        N: F,
        {N, F}: X,
        F: {N, F, X};

    /// Adds two church numerals.
    /// ```text
    /// S ::= Successor
    /// λm.λn.mSn
    /// ```
    pub fn Add ::= { M. N. { M, Successor, N }} where
        M: Successor,
        {M, Successor}: N;

    /// Multiplies two church numerals - this is simply composition.
    pub fn Multiply ::= { X. Y. (Composed<X, Y>) };

    /// Predecessor function. Gets the number below a given church numeral.
    /// ```text
    /// λn.λf.λx. n (λg.λh. h (g f)) (λu.x) (λu.u)
    /// ```
    pub fn Predecessor ::= { N. F. X. { N, Pred_1<F>, Constant<X>, Identity }} where
        N: (Pred_1<F>),
        {N, Pred_1<F>}: (Constant<X>),
        {N, Pred_1<F>, Constant<X>}: Identity;

    fn Pred_1<F> ::= { G. H. { H, { G, F }}} where
        H: {G, F},
        G: F;
    
    /// Subtracts two church numerals.
    /// ```text
    /// P ::= Predecessor
    /// λm.λn.nPm
    /// ```
    pub fn Subtract ::= { M. N. { N, Predecessor, M }} where
        N: Predecessor,
        {N, Predecessor}: M;
    
    /// Raises a numeral to the power of another.
    /// ```text
    /// λm.λn.nm
    /// ```
    pub fn Exponent ::= { M. N. { N, M }} where N: M;


    /// Returns whether a number is zero.
    /// ```text
    /// F ::= False
    /// T ::= True
    /// λn.n(λx.F)T
    /// ```
    pub fn IsZero ::= { N. { N, Constant<False>, True }} where
        N: (Constant<False>),
        {N, Constant<False>}: True;
    
    
    /// Returns whether one number is less than or equal to another.
    /// ```text
    /// ? ::= IsZero
    /// - ::= Subtract
    /// λm.λn.?(-mn)
    /// ```
    pub fn Leq ::= { M. N. { IsZero, { Subtract, M, N }}} where
        Subtract: M,
        {Subtract, M}: N,
        IsZero: { Subtract, M, N };
    
    
    /// Returns whether two numbers are equal.
    /// ```text
    /// & ::= And
    /// ≤ ::= Leq
    /// λm.λn.&(≤mn)(≤nm)
    /// ```
    pub fn Eq ::= { M. N. { And, { Leq, M, N }, { Leq, N, M }}} where
        Leq: M, Leq: N,
        {Leq, M}: N, {Leq, N}: M,
        And: {Leq, M, N},
        {And, { Leq, M, N }}: { Leq, N, M };

    /// Converts a church numeral to a constant number. See [`ConstNumber`].
    /// ```text
    /// λn.n(λ{X}.{X + 1}){0}
    /// ```
    @[cfg(any(doc, feature = "const-numeral"))]
    pub fn ToNumber ::= { N. { N, ConstIncrement, ConstNumber<0> }} where
        N: ConstIncrement,
        ConstIncrement: (ConstNumber<0>),
        {N, ConstIncrement}: (ConstNumber<0>);


}

// Due to const generics, this has to be explicitly declared.
/// Increments a [`ConstNumber`] by one. Used to define [`ToNumber`].
/// ```text
/// λ{X}.{X + 1}
/// ```
#[cfg(any(doc, feature = "const-numeral"))]
pub struct ConstIncrement;
/// Constant number returned by converting a church numeral.
#[cfg(any(doc, feature = "const-numeral"))]
pub struct ConstNumber<const N: u64>;

#[cfg(any(doc, feature = "const-numeral"))]
impl<const N: u64> Function<ConstNumber<N>> for ConstIncrement
where
    ConstNumber<{ N + 1 }>: Sized,
{
    type Output = ConstNumber<{ N + 1 }>;
}

#[cfg(any(doc, feature = "const-numeral"))]
impl<const N: u64> ConstNumber<N> {
    /// Extracts the number argument from a constant number.
    #[inline]
    pub const fn value() -> u64 { N }
}

#[cfg(test)]
mod test {
    #![allow(dead_code)]
    use crate::prelude::*;

    type Two = call!{Successor, { Successor, Zero }};
    type Three = call!{Successor, Two};

    #[test]
    fn main() {
        let _: call!{
            Eq, {Multiply, Two, Three}, {Add, Three, Three}
        } = <True>::default();
    }
}