1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
//! This crate provides types and traits to simplify
//! the creation of lambda functions in rust. It
//! provides Event and Return types and specific
//! Runners for various lambda types.
//!
//! # Basic Lambda with no shared data
//!
//! Creating a normal lambda is very easy. First create a type which implements [`Runner`] and
//! then use it either in the [`exec`] or [`exec_tokio`] function:
//!
//! ```no_run
//! struct Runner;
//!
//! #[async_trait::async_trait]
//! impl<'a> lambda_runtime_types::Runner<'a, (), (), ()> for Runner {
//! async fn run(shared: &'a (), event: lambda_runtime_types::LambdaEvent<'a, ()>) -> anyhow::Result<()> {
//! // Run code on every invocation
//! Ok(())
//! }
//!
//! async fn setup(_region: &'a str) -> anyhow::Result<()> {
//! // Setup logging to make sure that errors are printed
//! Ok(())
//! }
//! }
//!
//! pub fn main() -> anyhow::Result<()> {
//! lambda_runtime_types::exec_tokio::<_, _, Runner, _>()
//! }
//! ```
//!
//! # Available lambda types
//!
//! There are various modules which predefined Event and Return types and Runner traits
//! specialised for differnet lambda usages. Check out the modules for examples or their
//! usage.
//!
//! * [`rotate`]
//!
//! # Custom Event and Return types
//!
//! If the predefined types are not enough, custom types can be used as long as types for
//! events implement [`serde::Deserialize`] and return types implement [`serde::Serialize`].
//!
//! ```no_run
//! #[derive(serde::Deserialize, Debug)]
//! struct Event {
//! #[serde(flatten)]
//! attributes: std::collections::HashMap<String, serde_json::Value>,
//! }
//!
//! #[derive(serde::Serialize, Debug)]
//! struct Return {
//! data: std::borrow::Cow<'static, str>,
//! }
//!
//! struct Runner;
//!
//! #[async_trait::async_trait]
//! impl<'a> lambda_runtime_types::Runner<'a, (), Event, Return> for Runner {
//! async fn run(shared: &'a (), event: lambda_runtime_types::LambdaEvent<'a, Event>) -> anyhow::Result<Return> {
//! println!("{:?}", event);
//! Ok(Return {
//! data: event
//! .event
//! .attributes
//! .get("test")
//! .and_then(|a| a.as_str())
//! .map(ToOwned::to_owned)
//! .map(Into::into)
//! .unwrap_or_else(|| "none".into()),
//! })
//! }
//!
//! async fn setup(_region: &'a str) -> anyhow::Result<()> {
//! // Setup logging to make sure that errors are printed
//! Ok(())
//! }
//! }
//!
//! pub fn main() -> anyhow::Result<()> {
//! lambda_runtime_types::exec_tokio::<_, _, Runner, _>()
//! }
//! ```
//!
//! # Shared Data
//!
//! With AWS Lambda, its possible to share data between invocations, as long as both
//! invocations use the same runtime environment. To use this functinality, its possible
//! to define a shared data type which will persist data by using Interior Mutability:
//!
//! ```no_run
//! #[derive(Default)]
//! struct Shared {
//! invocations: tokio::sync::Mutex<u64>,
//! }
//!
//! struct Runner;
//!
//! #[async_trait::async_trait]
//! impl<'a> lambda_runtime_types::Runner<'a, Shared, (), ()> for Runner {
//! async fn run(shared: &'a Shared, event: lambda_runtime_types::LambdaEvent<'a, ()>) -> anyhow::Result<()> {
//! let mut invocations = shared.invocations.lock().await;
//! *invocations += 1;
//! Ok(())
//! }
//!
//! async fn setup(_region: &'a str) -> anyhow::Result<Shared> {
//! // Setup logging to make sure that errors are printed
//! Ok(Shared::default())
//! }
//! }
//!
//! pub fn main() -> anyhow::Result<()> {
//! lambda_runtime_types::exec_tokio::<_, _, Runner, _>()
//! }
//! ```
//!
//! Its important to know, that lambda execution evironments never run multiple invocations
//! simultaneously. Its therefore possible to keep the mutex unlocked for the whole invocation
//! as it will never block other invocations. Instead it is even recommended to do so, to
//! make sure that there are no unnessary things slowing down lambda execution time.
//!
//! # Timeout handling
//!
//! This crate implements a timeout handling logic. Normally, if a lambda runs into a timeout,
//! it will not create an error, which then does not get propagated by `on_error` destinations.
//!
//! To fix that, a timeout handler is setup, which will "fail" 100 miliseconds before the lambda
//! would run into a timeout, creating an error which then is propagated. There is, however, no
//! gurantee that this handler will fail in time. It will only work, when there are multiple
//! tokio threads or when the main lambda code is currently awaiting, giving tokio the chance
//! to switch tasks (or run them in parallel) and fail the execution.
//!
//! # Memory exhaustion
//!
//! Another thing to consider when running lambdas is memory exhaustion. Unfortunatly it is not
//! possible in rust to check the current memory usage. Therefore it is also not possible to
//! fail before running into OOF. When running lambdas, it may be necessary to setup checks to
//! verify that a lambda completed successfully, and did not run into OOF, as these errors also
//! do not get propagated to `on_error` destinations.
//!
#![deny(clippy::all, clippy::nursery)]
#![deny(nonstandard_style, rust_2018_idioms, unused_crate_dependencies)]
#![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))]
#[cfg(feature = "_rotate")]
#[cfg_attr(
docsrs,
doc(cfg(any(feature = "rotate_rusoto", feature = "rotate_aws_sdk")))
)]
pub mod rotate;
#[cfg(test)]
use native_tls as _;
#[cfg(test)]
use postgres_native_tls as _;
#[cfg(test)]
use simple_logger as _;
#[cfg(test)]
use tokio_postgres as _;
pub use lambda_runtime::{Config, Context};
/// Types which contains all the Information relevant for
/// the current invocation
#[non_exhaustive]
#[derive(Debug)]
pub struct LambdaEvent<'a, Event> {
/// The expected Event which is being send
/// to the lambda by AWS.
pub event: Event,
/// Region the lambda is running in
pub region: &'a str,
/// Lambda Invocation Context
pub ctx: Context,
}
/// Defines a type which is executed every time a lambda
/// is invoced.
///
/// Types:
/// * `Shared`: Type which is shared between lambda
/// invocations. Note that lambda will
/// create multiple environments for
/// simulations invokations and environments
/// are only kept alive for a certain time.
/// It is thus not guaranteed that data
/// can be reused, but with this types
/// its possible.
/// * `Event`: The expected Event which is being send
/// to the lambda by AWS.
/// * `Return`: Type which is the result of the lamba
/// invocation being returned to AWS
#[async_trait::async_trait]
pub trait Runner<'a, Shared, Event, Return>
where
Shared: Send + Sync + 'a,
Event: for<'de> serde::Deserialize<'de> + std::fmt::Debug,
Return: serde::Serialize,
{
/// Invoked only once before lambda runtime start. Does not get called on each
/// lambda invocation. Can be used to setup logging and other global services,
/// but should be short as it delays lambda startup
async fn setup(region: &'a str) -> anyhow::Result<Shared>;
/// Invoked for every lambda invocation. Data in `shared` is persisted between
/// invocations as long as they are running in the same `execution environment`
///
/// More Info: <https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html>
async fn run(shared: &'a Shared, event: LambdaEvent<'a, Event>) -> anyhow::Result<Return>;
}
/// Lambda entrypoint. This function sets up a lambda
/// multi-thread runtimes and executes [`exec`]. If you
/// already have your own runtime, use the [`exec`]
/// function.
///
/// Types:
/// * `Shared`: Type which is shared between lambda
/// invocations. Note that lambda will
/// create multiple environments for
/// simulations invokations and environments
/// are only kept alive for a certain time.
/// It is thus not guaranteed that data
/// can be reused, but with this types
/// its possible.
/// * `Event`: The expected Event which is being send
/// to the lambda by AWS.
/// * `Run`: Runner which is execued for each lambda
/// invocation.
/// * `Return`: Type which is the result of the lamba
/// invocation being returned to AWS
pub fn exec_tokio<Shared, Event, Run, Return>() -> anyhow::Result<()>
where
Shared: Send + Sync,
Event: for<'de> serde::Deserialize<'de> + std::fmt::Debug + Send,
Run: for<'a> Runner<'a, Shared, Event, Return>,
Return: serde::Serialize,
{
use anyhow::Context;
use tokio::runtime::Builder;
Builder::new_multi_thread()
.enable_all()
.build()
.context("Unable to build tokio runtime")?
.block_on(exec::<Shared, Event, Run, Return>())
}
/// Lambda entrypoint. This function requires a
/// running tokio runtime. Alternativly use [`exec_tokio`]
/// which creates one.
///
/// Types:
/// * `Shared`: Type which is shared between lambda
/// invocations. Note that lambda will
/// create multiple environments for
/// simulations invokations and environments
/// are only kept alive for a certain time.
/// It is thus not guaranteed that data
/// can be reused, but with this types
/// its possible.
/// * `Event`: The expected Event which is being send
/// to the lambda by AWS.
/// * `Run`: Runner which is execued for each lambda
/// invocation.
/// * `Return`: Type which is the result of the lamba
/// invocation being returned to AWS
pub async fn exec<Shared, Event, Run, Return>() -> anyhow::Result<()>
where
Shared: Send + Sync,
Event: for<'de> serde::Deserialize<'de> + std::fmt::Debug + Send,
Run: for<'a> Runner<'a, Shared, Event, Return>,
Return: serde::Serialize,
{
use anyhow::{anyhow, Context};
use lambda_runtime::{service_fn, LambdaEvent};
use std::env;
log::info!("Starting lambda runtime");
let region = env::var("AWS_REGION").context("Missing AWS_REGION env variable")?;
let region_ref = ®ion;
let shared = Run::setup(region_ref).await?;
let shared_ref = &shared;
lambda_runtime::run(service_fn(move |data: LambdaEvent<Event>| {
log::info!("Received lambda invocation with event: {:?}", data.payload);
let deadline: u64 = data.context.deadline;
run::<_, Event, Run, Return>(shared_ref, data, Some(deadline), region_ref)
}))
.await
.map_err(|e| anyhow!(e))
}
#[allow(clippy::unit_arg)]
async fn run<'a, Shared, Event, Run, Return>(
shared: &'a Shared,
event: lambda_runtime::LambdaEvent<Event>,
deadline_in_ms: Option<u64>,
region: &'a str,
) -> anyhow::Result<Return>
where
Shared: Send + Sync,
Event: for<'de> serde::Deserialize<'de> + std::fmt::Debug + Send,
Run: Runner<'a, Shared, Event, Return>,
Return: serde::Serialize,
{
use anyhow::anyhow;
use futures::FutureExt;
let mut runner = Run::run(
shared,
LambdaEvent {
event: event.payload,
region,
ctx: event.context,
},
)
.fuse();
let res = if let Some(deadline_in_ms) = deadline_in_ms {
let mut timeout = Box::pin(timeout_handler(deadline_in_ms).fuse());
futures::select! {
res = runner => res,
_ = timeout => Err(anyhow!("Lambda failed by running into a timeout")),
}
} else {
runner.await
};
log::info!("Completed lambda invocation");
match res {
Ok(res) => Ok(res),
Err(err) => {
log::error!("{:?}", err);
Err(err)
}
}
}
async fn timeout_handler(deadline_in_ms: u64) {
use std::time::{Duration, SystemTime, UNIX_EPOCH};
use tokio::time::Instant;
let epoch = UNIX_EPOCH;
let now = SystemTime::now();
let now_instant = Instant::now();
let duration_from_now = now.duration_since(epoch).expect("Time went backwards");
let duration_from_epoch = Duration::from_millis(deadline_in_ms);
let duration_deadline = duration_from_epoch - duration_from_now - Duration::from_millis(100);
let deadline = now_instant + duration_deadline;
log::info!("Setting deadline to: {:?}", deadline);
tokio::time::sleep_until(deadline).await;
}
/// TestData which can be used to test lambda invocations
/// locally in combination with [`exec_test`].
#[derive(serde::Deserialize, Clone, Debug)]
#[cfg(feature = "test")]
#[cfg_attr(docsrs, doc(cfg(feature = "test")))]
pub struct TestData<Event> {
region: String,
invocations: Vec<Event>,
}
/// Lambda entrypoint. This function can be used to
/// test one or multiple lambda invocations locally.
///
/// Types:
/// * `Shared`: Type which is shared between lambda
/// invocations. Note that lambda will
/// create multiple environments for
/// simulations invokations and environments
/// are only kept alive for a certain time.
/// It is thus not guaranteed that data
/// can be reused, but with this types
/// its possible.
/// * `Event`: The expected Event which is being send
/// to the lambda by AWS.
/// * `Run`: Runner which is execued for each lambda
/// invocation.
/// * `Return`: Type which is the result of the lamba
/// invocation being returned to AWS
#[cfg(feature = "test")]
#[cfg_attr(docsrs, doc(cfg(feature = "test")))]
pub fn exec_test<Shared, Event, Run, Return>(test_data: &str) -> anyhow::Result<()>
where
Shared: Send + Sync,
Event: for<'de> serde::Deserialize<'de> + std::fmt::Debug + Send,
Run: for<'a> Runner<'a, Shared, Event, Return>,
Return: serde::Serialize + std::fmt::Debug,
{
use anyhow::Context;
use tokio::runtime::Builder;
Builder::new_multi_thread()
.enable_all()
.build()
.context("Unable to build tokio runtime")?
.block_on(async {
log::info!("Starting lambda test runtime");
let test_data: TestData<Event> =
serde_json::from_str(test_data).context("Unable to deserialize test_data")?;
let region_ref = &test_data.region;
let shared = Run::setup(region_ref).await?;
let shared_ref = &shared;
for (i, data) in test_data.invocations.into_iter().enumerate() {
log::info!("Starting lambda invocation: {}", i);
let res = run::<_, Event, Run, Return>(
shared_ref,
lambda_runtime::LambdaEvent {
payload: data,
context: crate::Context::default(),
},
None,
region_ref,
)
.await?;
log::info!("{:?}", res);
}
Ok(())
})
}