lambda_otel_lite/
processor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
//! Span processor implementation optimized for AWS Lambda functions.
//!
//! This module provides a Lambda-optimized span processor that efficiently manages OpenTelemetry spans
//! in a serverless environment. It uses a ring buffer to store spans in memory and supports different
//! processing modes to balance latency and reliability.
//!
//! # Architecture
//!
//! The processor is designed specifically for the Lambda execution environment:
//!
//! 1. **Ring Buffer Storage**:
//!    - Fixed-size circular buffer prevents memory growth
//!    - O(1) push operations with no memory reallocation
//!    - FIFO ordering ensures spans are processed in order
//!    - Efficient batch removal for export
//!    - When full, new spans are dropped (with warning logs)
//!
//! 2. **Processing Modes**:
//!    - `Sync`: Immediate flush in handler thread
//!      - Best for development and debugging
//!      - Higher latency but guaranteed delivery
//!    - `Async`: Flush via Lambda extension
//!      - Best for production use
//!      - Minimal latency impact on handler
//!      - Reliable delivery through extension
//!    - `Finalize`: Delegated to processor
//!      - Best for custom export strategies
//!      - Compatible with BatchSpanProcessor
//!      - Full control over export timing
//!
//! 3. **Thread Safety**:
//!    - All operations are thread-safe
//!    - Uses Mutex for span buffer access
//!    - Atomic operations for state management
//!    - Safe for concurrent span submission
//!
//! # Configuration
//!
//! The processor can be configured through environment variables:
//!
//! - `LAMBDA_EXTENSION_SPAN_PROCESSOR_MODE`: Controls processing mode
//!   - "sync" for Sync mode (default)
//!   - "async" for Async mode
//!   - "finalize" for Finalize mode
//!
//! - `LAMBDA_SPAN_PROCESSOR_QUEUE_SIZE`: Controls buffer size
//!   - Defaults to 2048 spans
//!   - Should be tuned based on span volume
//!
//! # Usage Examples
//!
//! Basic setup with default configuration:
//!
//! ```no_run
//! use lambda_otel_lite::{ProcessorConfig, LambdaSpanProcessor};
//! use otlp_stdout_span_exporter::OtlpStdoutSpanExporter;
//!
//! let processor = LambdaSpanProcessor::new(
//!     Box::new(OtlpStdoutSpanExporter::default()),
//!     ProcessorConfig::default()
//! );
//! ```
//!
//! Custom configuration for high-volume scenarios:
//!
//! ```no_run
//! use lambda_otel_lite::{ProcessorConfig, LambdaSpanProcessor};
//! use otlp_stdout_span_exporter::OtlpStdoutSpanExporter;
//!
//! let processor = LambdaSpanProcessor::new(
//!     Box::new(OtlpStdoutSpanExporter::default()),
//!     ProcessorConfig {
//!         max_queue_size: 4096, // Larger buffer for high volume
//!     }
//! );
//! ```
//!
//! # Performance Considerations
//!
//! 1. **Memory Usage**:
//!    - Fixed memory footprint based on queue size
//!    - Each span typically uses 100-500 bytes
//!    - Default 2048 spans ≈ 0.5-1MB memory
//!
//! 2. **Latency Impact**:
//!    - Sync mode: Adds export time to handler latency
//!    - Async mode: Minimal impact (just span queueing)
//!    - Finalize mode: Depends on processor implementation
//!
//! 3. **Reliability**:
//!    - Spans may be dropped if buffer fills
//!    - Warning logs indicate dropped spans
//!    - Consider increasing buffer size if spans are dropped
//!
//! # Best Practices
//!
//! 1. **Mode Selection**:
//!    - Consider payload size and memory/CPU configuration
//!    - Use Sync mode for simple exports or low resource environments
//!    - Use Async mode the telemetrry payload is expected to be large, and the extension overhead is an acceptable trade-off with the handler latency
//!    - Use Finalize mode for custom export strategies
//!
//! 2. **Buffer Sizing**:
//!    - Monitor dropped_spans metric
//!    - Size based on max spans per invocation
//!    - Consider function memory when sizing
//!
//! 3. **Error Handling**:
//!    - Export errors are logged but don't fail function
//!    - Monitor for export failures in logs
//!    - Consider retry strategies in custom exporters

use opentelemetry::{otel_debug, otel_warn};
use opentelemetry::{
    trace::{TraceError, TraceResult},
    Context,
};
use opentelemetry_sdk::{
    export::trace::{SpanData, SpanExporter},
    trace::{Span, SpanProcessor},
    Resource,
};
use std::sync::{
    atomic::{AtomicBool, AtomicUsize, Ordering},
    Arc, Mutex,
};

/// Controls how spans are processed and exported.
///
/// This enum determines when and how OpenTelemetry spans are flushed from the buffer
/// to the configured exporter. Each mode offers different tradeoffs between latency,
/// reliability, and flexibility.
///
/// # Modes
///
/// - `Sync`: Immediate flush in handler thread
///   - Spans are flushed before handler returns
///   - Direct export without extension coordination
///   - May be more efficient for small payloads and low memory configurations
///   - Guarantees span delivery before response
///
/// - `Async`: Flush via Lambda extension
///   - Spans are flushed after handler returns
///   - Requires coordination with extension process
///   - Additional overhead from IPC with extension
///   - Provides retry capabilities through extension
///
/// - `Finalize`: Delegated to processor
///   - Spans handled by configured processor
///   - Compatible with BatchSpanProcessor
///   - Best for custom export strategies
///   - Full control over export timing
///
/// # Configuration
///
/// The mode can be configured using the `LAMBDA_EXTENSION_SPAN_PROCESSOR_MODE` environment variable:
/// - "sync" for Sync mode (default)
/// - "async" for Async mode
/// - "finalize" for Finalize mode
///
/// # Example
///
/// ```no_run
/// use lambda_otel_lite::ProcessorMode;
/// use std::env;
///
/// // Set mode via environment variable
/// env::set_var("LAMBDA_EXTENSION_SPAN_PROCESSOR_MODE", "async");
///
/// // Get mode from environment
/// let mode = ProcessorMode::from_env();
/// assert!(matches!(mode, ProcessorMode::Async));
/// ```
#[derive(Debug, Clone, PartialEq)]
pub enum ProcessorMode {
    /// Synchronous flush in handler thread. Best for development and debugging.
    Sync,
    /// Asynchronous flush via extension. Best for production use to minimize latency.
    Async,
    /// Let processor handle flushing. Best with BatchSpanProcessor for custom export strategies.
    Finalize,
}

impl ProcessorMode {
    /// Create ProcessorMode from environment variable.
    ///
    /// Uses LAMBDA_EXTENSION_SPAN_PROCESSOR_MODE environment variable.
    /// Defaults to Sync mode if not set or invalid.
    pub fn from_env() -> Self {
        match std::env::var("LAMBDA_EXTENSION_SPAN_PROCESSOR_MODE")
            .map(|s| s.to_lowercase())
            .as_deref()
        {
            Ok("sync") => {
                otel_debug!(
                    name: "ProcessorMode.from_env",
                    message = "using sync processor mode"
                );
                ProcessorMode::Sync
            }
            Ok("async") => {
                otel_debug!(
                    name: "ProcessorMode.from_env",
                    message = "using async processor mode"
                );
                ProcessorMode::Async
            }
            Ok("finalize") => {
                otel_debug!(
                    name: "ProcessorMode.from_env",
                    message = "using finalize processor mode"
                );
                ProcessorMode::Finalize
            }
            Ok(value) => {
                otel_warn!(
                    name: "ProcessorMode.from_env",
                    message = format!("invalid processor mode: {}, defaulting to sync", value)
                );
                ProcessorMode::Sync
            }
            Err(_) => {
                otel_debug!(
                    name: "ProcessorMode.from_env",
                    message = "no processor mode set, defaulting to sync"
                );
                ProcessorMode::Sync
            }
        }
    }
}

/// Configuration for the Lambda span processor.
///
/// This struct allows customizing the behavior of the span processor to match your
/// workload's requirements. The configuration affects memory usage, span handling
/// capacity, and potential span loss under high load.
///
/// # Configuration Options
///
/// - `max_queue_size`: Maximum number of spans that can be stored in memory
///   - Determines memory usage (each span ≈ 100-500 bytes)
///   - When full, new spans are dropped with warning logs
///   - Should be sized based on expected span volume
///
/// # Environment Variables
///
/// The queue size can be configured using the `LAMBDA_SPAN_PROCESSOR_QUEUE_SIZE`
/// environment variable. If not set, defaults to 2048 spans.
///
/// # Example
///
/// ```no_run
/// use lambda_otel_lite::ProcessorConfig;
///
/// // Default configuration (2048 spans)
/// let config = ProcessorConfig::default();
///
/// // Custom configuration for high volume
/// let config = ProcessorConfig {
///     max_queue_size: 4096,
/// };
/// ```
#[derive(Debug)]
pub struct ProcessorConfig {
    /// Maximum number of spans that can be stored in memory
    pub max_queue_size: usize,
}

impl Default for ProcessorConfig {
    fn default() -> Self {
        Self {
            max_queue_size: 2048,
        }
    }
}

/// A fixed-size ring buffer for storing spans efficiently.
///
/// This implementation provides a memory-efficient way to store spans with
/// predictable performance characteristics:
///
/// # Performance Characteristics
///
/// - Push Operation: O(1)
/// - Memory Usage: Fixed based on capacity
/// - Order: FIFO (First In, First Out)
/// - Batch Operations: Efficient removal of all spans
///
/// # Implementation Details
///
/// The buffer uses a circular array with head and tail pointers:
/// - `head`: Points to next write position
/// - `tail`: Points to next read position
/// - `size`: Current number of elements
/// - `capacity`: Maximum number of elements
///
/// When the buffer is full, new spans are rejected rather than overwriting old ones.
/// This ensures no data loss occurs silently.
#[derive(Debug)]
struct SpanRingBuffer {
    buffer: Vec<Option<SpanData>>,
    head: usize, // Where to write next
    tail: usize, // Where to read next
    size: usize, // Current number of elements
    capacity: usize,
}

impl SpanRingBuffer {
    fn new(capacity: usize) -> Self {
        let mut buffer = Vec::with_capacity(capacity);
        buffer.extend((0..capacity).map(|_| None));
        Self {
            buffer,
            head: 0,
            tail: 0,
            size: 0,
            capacity,
        }
    }

    fn push(&mut self, span: SpanData) -> bool {
        if self.size == self.capacity {
            return false;
        }

        self.buffer[self.head] = Some(span);
        self.head = (self.head + 1) % self.capacity;
        self.size += 1;
        true
    }

    fn take_all(&mut self) -> Vec<SpanData> {
        let mut result = Vec::with_capacity(self.size);
        while self.size > 0 {
            if let Some(span) = self.buffer[self.tail].take() {
                result.push(span);
            }
            self.tail = (self.tail + 1) % self.capacity;
            self.size -= 1;
        }
        self.head = 0;
        self.tail = 0;
        result
    }

    fn is_empty(&self) -> bool {
        self.size == 0
    }
}

/// Lambda-optimized span processor implementation.
///
/// This processor is designed specifically for AWS Lambda functions, providing:
/// - Efficient span storage through a ring buffer
/// - Configurable processing modes for different use cases
/// - Thread-safe operations for concurrent span submission
/// - Automatic span sampling and filtering
/// - Batch export capabilities
///
/// # Memory Usage
///
/// The processor uses a fixed amount of memory based on the configured queue size:
/// - Each span typically uses 100-500 bytes
/// - Default configuration (2048 spans) uses 0.5-1MB
/// - When buffer is full, new spans are dropped with warnings
///
/// # Thread Safety
///
/// All operations are thread-safe through:
/// - Mutex protection for span buffer access
/// - Atomic operations for state management
/// - Safe sharing between threads with Arc
///
/// # Example
///
/// ```no_run
/// use lambda_otel_lite::{LambdaSpanProcessor, ProcessorConfig};
/// use otlp_stdout_span_exporter::OtlpStdoutSpanExporter;
///
/// let processor = LambdaSpanProcessor::new(
///     Box::new(OtlpStdoutSpanExporter::default()),
///     ProcessorConfig::default(),
/// );
///
/// // Processor can be safely shared between threads
/// let processor = std::sync::Arc::new(processor);
/// ```
///
/// # Error Handling
///
/// The processor handles errors gracefully:
/// - Export failures are logged but don't fail the function
/// - Dropped spans are counted and logged with warnings
/// - Buffer overflow warnings help with capacity planning
#[derive(Debug)]
pub struct LambdaSpanProcessor {
    exporter: Mutex<Box<dyn SpanExporter>>,
    spans: Mutex<SpanRingBuffer>,
    is_shutdown: Arc<AtomicBool>,
    dropped_count: AtomicUsize,
}

impl LambdaSpanProcessor {
    /// Creates a new LambdaSpanProcessor with the given configuration
    pub fn new(exporter: Box<dyn SpanExporter>, config: ProcessorConfig) -> Self {
        Self {
            exporter: Mutex::new(exporter),
            spans: Mutex::new(SpanRingBuffer::new(config.max_queue_size)),
            is_shutdown: Arc::new(AtomicBool::new(false)),
            dropped_count: AtomicUsize::new(0),
        }
    }
}

impl SpanProcessor for LambdaSpanProcessor {
    fn on_start(&self, _span: &mut Span, _cx: &Context) {
        // No-op, as we only process spans on end
    }

    fn on_end(&self, span: SpanData) {
        if self.is_shutdown.load(Ordering::Relaxed) {
            return;
        }

        // Skip unsampled spans
        if !span.span_context.is_sampled() {
            return;
        }

        // Try to add span to the buffer
        if let Ok(mut spans) = self.spans.lock() {
            if !spans.push(span) {
                let prev = self.dropped_count.fetch_add(1, Ordering::Relaxed);
                if prev == 0 || prev % 100 == 0 {
                    otel_warn!(
                        name: "LambdaSpanProcessor.on_end",
                        message = "Dropping span because buffer is full",
                        dropped_spans = prev + 1
                    );
                }
            }
        } else {
            otel_warn!(
                name: "LambdaSpanProcessor.on_end",
                message = "Failed to acquire spans lock in on_end"
            );
        }
    }

    fn force_flush(&self) -> TraceResult<()> {
        // Take the spans while holding the lock
        let batch = {
            if let Ok(mut spans) = self.spans.lock() {
                if spans.is_empty() {
                    return Ok(());
                }
                spans.take_all()
            } else {
                return Err(TraceError::Other(
                    "Failed to acquire spans lock in force_flush".into(),
                ));
            }
        };

        let result = self
            .exporter
            .lock()
            .map_err(|_| TraceError::Other("LambdaSpanProcessor mutex poison".into()))
            .and_then(|mut exporter| futures_executor::block_on(exporter.export(batch)));
        if let Err(err) = result {
            otel_debug!(
                name: "LambdaSpanProcessor.force_flush.Error",
                reason = format!("{:?}", err)
            );
        }

        Ok(())
    }

    fn shutdown(&self) -> TraceResult<()> {
        self.is_shutdown.store(true, Ordering::Relaxed);
        // Flush any remaining spans
        self.force_flush()?;
        if let Ok(mut exporter) = self.exporter.lock() {
            exporter.shutdown();
        }
        Ok(())
    }

    fn set_resource(&mut self, resource: &Resource) {
        if let Ok(mut exporter) = self.exporter.lock() {
            exporter.set_resource(resource);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use opentelemetry::{
        trace::{SpanContext, SpanId, TraceFlags, TraceId, TraceState},
        InstrumentationScope,
    };
    use opentelemetry_sdk::{
        export::trace::SpanExporter,
        trace::{SpanEvents, SpanLinks},
    };
    use std::{borrow::Cow, future::Future, pin::Pin, sync::Arc};
    use tokio::sync::Mutex;

    // Mock exporter that captures exported spans
    #[derive(Debug)]
    struct MockExporter {
        spans: Arc<Mutex<Vec<SpanData>>>,
    }

    impl MockExporter {
        fn new() -> Self {
            Self {
                spans: Arc::new(Mutex::new(Vec::new())),
            }
        }
    }

    impl SpanExporter for MockExporter {
        fn export(
            &mut self,
            batch: Vec<SpanData>,
        ) -> Pin<Box<dyn Future<Output = TraceResult<()>> + Send>> {
            let spans = self.spans.clone();
            Box::pin(async move {
                let mut spans = spans.lock().await;
                spans.extend(batch);
                Ok(())
            })
        }

        fn shutdown(&mut self) {}
    }

    // Helper function to create a test span
    fn create_test_span(name: &str) -> SpanData {
        let flags = TraceFlags::default().with_sampled(true);

        SpanData {
            span_context: SpanContext::new(
                TraceId::from_u128(1),
                SpanId::from_u64(1),
                flags,
                false,
                TraceState::default(),
            ),
            parent_span_id: SpanId::INVALID,
            span_kind: opentelemetry::trace::SpanKind::Internal,
            name: Cow::Owned(name.to_string()),
            start_time: std::time::SystemTime::now(),
            end_time: std::time::SystemTime::now(),
            attributes: Vec::new(),
            dropped_attributes_count: 0,
            events: SpanEvents::default(),
            links: SpanLinks::default(),
            status: opentelemetry::trace::Status::default(),
            instrumentation_scope: InstrumentationScope::builder("test").build(),
        }
    }

    #[test]
    fn test_ring_buffer_basic_operations() {
        let mut buffer = SpanRingBuffer::new(2);

        // Test empty buffer
        assert!(buffer.is_empty());
        assert_eq!(buffer.take_all(), vec![]);

        // Test adding spans
        buffer.push(create_test_span("span1"));
        buffer.push(create_test_span("span2"));

        assert!(!buffer.is_empty());

        // Test taking spans
        let spans = buffer.take_all();
        assert_eq!(spans.len(), 2);
        assert!(buffer.is_empty());
    }

    #[test]
    fn test_ring_buffer_overflow() {
        let mut buffer = SpanRingBuffer::new(2);

        // Fill buffer
        buffer.push(create_test_span("span1"));
        buffer.push(create_test_span("span2"));

        // Add one more span, should overwrite the oldest
        let success = buffer.push(create_test_span("span3"));
        assert!(!success); // Should fail since buffer is full

        let spans = buffer.take_all();
        assert_eq!(spans.len(), 2);
        assert!(spans.iter().any(|s| s.name == "span1"));
        assert!(spans.iter().any(|s| s.name == "span2"));
    }

    #[tokio::test]
    async fn test_processor_sync_mode() {
        let mock_exporter = MockExporter::new();
        let spans_exported = mock_exporter.spans.clone();

        let processor = LambdaSpanProcessor::new(
            Box::new(mock_exporter),
            ProcessorConfig { max_queue_size: 10 },
        );

        // Test span processing
        processor.on_end(create_test_span("test_span"));

        // Force flush to ensure export
        processor.force_flush().unwrap();

        // Verify span was exported
        let exported = spans_exported.lock().await;
        assert_eq!(exported.len(), 1);
        assert_eq!(exported[0].name, "test_span");
    }

    #[tokio::test]
    async fn test_shutdown_exports_remaining_spans() {
        let mock_exporter = MockExporter::new();
        let spans_exported = mock_exporter.spans.clone();

        let processor =
            LambdaSpanProcessor::new(Box::new(mock_exporter), ProcessorConfig::default());

        // Add some spans
        processor.on_end(create_test_span("span1"));
        processor.on_end(create_test_span("span2"));

        // Shutdown should export all spans
        processor.shutdown().unwrap();

        // Verify all spans were exported
        let exported = spans_exported.lock().await;
        assert_eq!(exported.len(), 2);

        // Verify new spans are dropped after shutdown
        processor.on_end(create_test_span("span3"));
        assert_eq!(exported.len(), 2); // No new spans after shutdown
    }

    #[tokio::test]
    async fn test_concurrent_span_processing() {
        let mock_exporter = MockExporter::new();
        let spans_exported = mock_exporter.spans.clone();

        let processor = Arc::new(LambdaSpanProcessor::new(
            Box::new(mock_exporter),
            ProcessorConfig {
                max_queue_size: 100,
            },
        ));

        let mut handles = Vec::new();

        // Spawn 10 tasks, each adding 10 spans
        for i in 0..10 {
            let processor = processor.clone();
            handles.push(tokio::spawn(async move {
                for j in 0..10 {
                    processor.on_end(create_test_span(&format!("span_{}_{}", i, j)));
                }
            }));
        }

        // Wait for all tasks to complete
        for handle in handles {
            handle.await.unwrap();
        }

        // Force flush and verify all spans were processed
        processor.force_flush().unwrap();

        let exported = spans_exported.lock().await;
        assert_eq!(exported.len(), 100);
        assert_eq!(processor.dropped_count.load(Ordering::Relaxed), 0);
    }
}