lakers_shared/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
//! Common data structures used by [lakers] and its dependent crates
//!
//! This crate is separate from lakers to avoid circular dependencies that would otherwise arise
//! from the pattern in which [lakers-ead] combined the main crate with variations of the
//! protocol's EAD handling. As its types will then likely move over into the main lakers crate, it
//! is recommended to use them through the public re-export there wherever possible.
//!
//! [lakers]: https://docs.rs/lakers/
//! [lakers-ead]: https://docs.rs/lakers-ead/latest/lakers_ead/
// NOTE: if there is no python-bindings feature, which will be the case for embedded builds,
//       then the crate will be no_std
#![cfg_attr(not(feature = "python-bindings"), no_std)]

pub use cbor_decoder::*;
pub use edhoc_parser::*;
pub use helpers::*;

use core::num::NonZeroI16;
use defmt_or_log::trace;

mod crypto;
pub use crypto::*;

mod cred;
pub use cred::*;

mod buffer;
pub use buffer::*;

#[cfg(feature = "python-bindings")]
use pyo3::prelude::*;
#[cfg(feature = "python-bindings")]
mod python_bindings;

/// Configured upscaling applied to fixed-size buffers
///
/// Do not rely on this: It is only pub because cbindgen needs it.
#[cfg(not(feature = "quadruple_sizes"))]
#[doc(hidden)]
pub const SCALE_FACTOR: usize = 1;
#[cfg(feature = "quadruple_sizes")]
#[doc(hidden)]
pub const SCALE_FACTOR: usize = 4;

// TODO: find a way to configure the buffer size
// need 128 to handle EAD fields, and 192 for the EAD_1 voucher
pub const MAX_MESSAGE_SIZE_LEN: usize = SCALE_FACTOR * (128 + 64);

pub const ID_CRED_LEN: usize = 4;
pub const SUITES_LEN: usize = 9;
pub const SUPPORTED_SUITES_LEN: usize = 1;
pub const EDHOC_METHOD: u8 = 3u8; // stat-stat is the only supported method
pub const P256_ELEM_LEN: usize = 32;
pub const SHA256_DIGEST_LEN: usize = 32;
pub const AES_CCM_KEY_LEN: usize = 16;
pub const AES_CCM_IV_LEN: usize = 13;
pub const AES_CCM_TAG_LEN: usize = 8;
pub const MAC_LENGTH: usize = 8; // used for EAD Zeroconf
pub const MAC_LENGTH_2: usize = MAC_LENGTH;
pub const MAC_LENGTH_3: usize = MAC_LENGTH_2;
pub const ENCODED_VOUCHER_LEN: usize = 1 + MAC_LENGTH; // 1 byte for the length of the bstr-encoded voucher

// maximum supported length of connection identifier for R
pub const MAX_KDF_CONTEXT_LEN: usize = SCALE_FACTOR * 256;
pub const MAX_KDF_LABEL_LEN: usize = 15; // for "KEYSTREAM_2"
pub const MAX_BUFFER_LEN: usize = SCALE_FACTOR * 256 + 64;
pub const CBOR_BYTE_STRING: u8 = 0x58u8;
pub const CBOR_TEXT_STRING: u8 = 0x78u8;
pub const CBOR_UINT_1BYTE: u8 = 0x18u8;
pub const CBOR_NEG_INT_1BYTE_START: u8 = 0x20u8;
pub const CBOR_NEG_INT_1BYTE_END: u8 = 0x37u8;
pub const CBOR_UINT_1BYTE_START: u8 = 0x0u8;
pub const CBOR_UINT_1BYTE_END: u8 = 0x17u8;
pub const CBOR_MAJOR_TEXT_STRING: u8 = 0x60u8;
pub const CBOR_MAJOR_BYTE_STRING: u8 = 0x40u8;
pub const CBOR_MAJOR_BYTE_STRING_MAX: u8 = 0x57u8;
pub const CBOR_MAJOR_ARRAY: u8 = 0x80u8;
pub const CBOR_MAJOR_ARRAY_MAX: u8 = 0x97u8;
pub const CBOR_MAJOR_MAP: u8 = 0xA0;
pub const MAX_INFO_LEN: usize = 2 + SHA256_DIGEST_LEN + // 32-byte digest as bstr
				            1 + MAX_KDF_LABEL_LEN +     // label <24 bytes as tstr
						    1 + MAX_KDF_CONTEXT_LEN +   // context <24 bytes as bstr
						    1; // length as u8

pub const KCSS_LABEL: u8 = 14;
pub const KID_LABEL: u8 = 4;

pub const ENC_STRUCTURE_LEN: usize = 8 + 5 + SHA256_DIGEST_LEN; // 8 for ENCRYPT0

pub const MAX_EAD_SIZE_LEN: usize = SCALE_FACTOR * 64;

/// Maximum length of a [`ConnId`] (`C_x`).
///
/// This length includes the leading CBOR encoding byte(s).
// If ints had a const `.clamp()` feature, this could be (8 * SCALE_FACTOR).clamp(1, 23).
const MAX_CONNID_ENCODED_LEN: usize = if cfg!(feature = "quadruple_sizes") {
    24
} else {
    8
};

pub type BytesSuites = [u8; SUITES_LEN];
pub type BytesSupportedSuites = [u8; SUPPORTED_SUITES_LEN];
pub const EDHOC_SUITES: BytesSuites = [0, 1, 2, 3, 4, 5, 6, 24, 25]; // all but private cipher suites
pub const EDHOC_SUPPORTED_SUITES: BytesSupportedSuites = [0x2u8];

pub type BytesEad2 = [u8; 0];
pub type BytesIdCred = [u8; ID_CRED_LEN];
pub type Bytes8 = [u8; 8];
pub type BytesCcmKeyLen = [u8; AES_CCM_KEY_LEN];
pub type BytesCcmIvLen = [u8; AES_CCM_IV_LEN];
pub type BufferPlaintext2 = EdhocMessageBuffer;
pub type BufferPlaintext3 = EdhocMessageBuffer;
pub type BytesMac2 = [u8; MAC_LENGTH_2];
pub type BytesMac3 = [u8; MAC_LENGTH_3];
pub type BufferMessage1 = EdhocMessageBuffer;
pub type BufferMessage3 = EdhocMessageBuffer;
pub type BufferCiphertext2 = EdhocMessageBuffer;
pub type BufferCiphertext3 = EdhocMessageBuffer;
pub type BytesHashLen = [u8; SHA256_DIGEST_LEN];
pub type BytesP256ElemLen = [u8; P256_ELEM_LEN];
pub type BufferMessage2 = EdhocMessageBuffer;
pub type BytesMaxBuffer = [u8; MAX_BUFFER_LEN];
pub type BytesMaxContextBuffer = [u8; MAX_KDF_CONTEXT_LEN];
pub type BytesMaxInfoBuffer = [u8; MAX_INFO_LEN];
pub type BytesMaxLabelBuffeer = [u8; MAX_KDF_LABEL_LEN];
pub type BytesEncStructureLen = [u8; ENC_STRUCTURE_LEN];

pub type BytesMac = [u8; MAC_LENGTH];
pub type BytesEncodedVoucher = [u8; ENCODED_VOUCHER_LEN];
pub type EADMessageBuffer = EdhocMessageBuffer; // TODO: make it of size MAX_EAD_SIZE_LEN

/// Value of C_R or C_I, as chosen by ourself or the peer.
///
/// Semantically, this is a byte string of some length.
///
/// Its legal values are constrained to only contain a single CBOR item that is either a byte
/// string or a number in -24..=23, all in preferred encoding.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
// TODO: This should not be needed, there is nothing special about the value 0.
#[derive(Default)]
pub struct ConnId([u8; MAX_CONNID_ENCODED_LEN]);

/// Classifier for the content of [`ConnId`]; used internally in its implementation.
enum ConnIdType {
    /// The ID contains a single positive or negative number, expressed in its first byte.
    SingleByte,
    /// The ID contains a byte string, and the first byte of the ID indicates its length.
    ///
    /// It is expected that if longer connection IDs than 1+0+n are ever supported, this will be
    /// renamed to ByteString10n, and longer variants get their own class.
    ByteString(u8),
}

impl ConnIdType {
    const _IMPL_CONSTRAINTS: () = assert!(
        MAX_CONNID_ENCODED_LEN <= 1 + 23,
        "Longer connection IDs require more elaborate decoding here"
    );

    /// Returns a classifier based on an initial byte.
    ///
    /// Its signature will need to change if ever connection IDs longer than 1+0+n are supported.
    fn classify(byte: u8) -> Option<Self> {
        if byte >> 5 <= 1 && byte & 0x1f < 24 {
            return Some(ConnIdType::SingleByte);
        } else if byte >> 5 == 2 && byte & 0x1f < 24 {
            return Some(ConnIdType::ByteString(byte & 0x1f));
        }
        None
    }

    /// Returns the number of bytes in the [`ConnId`]'s buffer.
    fn length(&self) -> usize {
        match self {
            ConnIdType::SingleByte => 1,
            ConnIdType::ByteString(n) => (1 + n).into(),
        }
    }
}

impl ConnId {
    /// Construct a ConnId from the result of [`cbor_decoder::int_raw`], which is a
    /// byte that represents a single positive or negative CBOR integer encoded in the 5 bits minor
    /// type.
    ///
    /// Evolving from u8-only values, this could later interact with the decoder directly.
    #[deprecated(
        note = "This API is only capable of generating a limited sub-set of the supported identifiers."
    )]
    pub const fn from_int_raw(raw: u8) -> Self {
        debug_assert!(raw >> 5 <= 1, "Major type is not an integer");
        debug_assert!(raw & 0x1f < 24, "Value is not immediate");
        // We might allow '' (the empty bytes tring, byte 40) as well, but the again, this API is
        // already deprecated.
        let mut s = [0; MAX_CONNID_ENCODED_LEN];
        s[0] = raw;
        Self(s)
    }

    /// The connection ID classification of this connection ID
    ///
    /// Due to the invariants of this type, this classification infallible.
    fn classify(&self) -> ConnIdType {
        let Some(t) = ConnIdType::classify(self.0[0]) else {
            unreachable!("Type invariant requires valid classification")
        };
        t
    }

    /// Read a connection identifier from a given decoder.
    ///
    /// It is an error for the decoder to read anything but a small integer or a byte string, to
    /// exceed the maximum allowed ConnId length, or to contain a byte string that should have been
    /// encoded as a small integer.
    pub fn from_decoder(decoder: &mut CBORDecoder<'_>) -> Result<Self, CBORError> {
        let mut s = [0; MAX_CONNID_ENCODED_LEN];
        let len = ConnIdType::classify(decoder.current()?)
            .ok_or(CBORError::DecodingError)?
            .length();
        s[..len].copy_from_slice(decoder.read_slice(len)?);
        Ok(Self(s))
    }

    /// The bytes that form the identifier (an arbitrary byte string)
    pub fn as_slice(&self) -> &[u8] {
        match self.classify() {
            ConnIdType::SingleByte => &self.0[..1],
            ConnIdType::ByteString(n) => &self.0[1..1 + usize::from(n)],
        }
    }

    /// The CBOR encoding of the identifier.
    ///
    /// For the 48 compact connection identifiers -24..=23, this is identical to the slice
    /// representation:
    ///
    /// ```
    /// # use lakers_shared::ConnId;
    /// let c_i = ConnId::from_slice(&[0x04]).unwrap();
    /// assert_eq!(c_i.as_cbor(), &[0x04]);
    /// ```
    ///
    /// For other IDs, this contains an extra byte header:
    ///
    /// ```
    /// # use lakers_shared::ConnId;
    /// let c_i = ConnId::from_slice(&[0xff]).unwrap();
    /// assert_eq!(c_i.as_cbor(), &[0x41, 0xff]);
    /// ```
    pub fn as_cbor(&self) -> &[u8] {
        &self.0[..self.classify().length()]
    }

    /// Try to construct a [`ConnId`] from a slice that represents its string value.
    ///
    /// This is the inverse of [Self::as_slice], and returns None if the identifier is too long
    /// (or, if only the compact 48 values are supported, outside of that range).
    ///
    /// ```
    /// # use lakers_shared::ConnId;
    /// let c_i = &[0x04];
    /// let c_i = ConnId::from_slice(c_i).unwrap();
    /// assert!(c_i.as_slice() == &[0x04]);
    ///
    /// let c_i = ConnId::from_slice(&[0x12, 0x34]).unwrap();
    /// assert!(c_i.as_slice() == &[0x12, 0x34]);
    /// ```
    pub fn from_slice(input: &[u8]) -> Option<Self> {
        if input.len() > MAX_CONNID_ENCODED_LEN - 1 {
            None
        } else {
            let mut s = [0; MAX_CONNID_ENCODED_LEN];
            if input.len() == 1
                && matches!(ConnIdType::classify(input[0]), Some(ConnIdType::SingleByte))
            {
                s[0] = input[0];
            } else {
                s[0] = input.len() as u8 | 0x40;
                s[1..1 + input.len()].copy_from_slice(input);
            }
            Some(Self(s))
        }
    }
}

#[derive(PartialEq, Debug)]
pub enum EDHOCMethod {
    StatStat = 3,
    // add others, such as:
    // PSK1 = ?,
    // PSK2 = ?,
}

impl From<EDHOCMethod> for u8 {
    fn from(method: EDHOCMethod) -> u8 {
        method as u8
    }
}

#[derive(PartialEq, Debug)]
pub enum EDHOCSuite {
    CipherSuite2 = 2,
    // add others, such as:
    // CiherSuite3 = 3,
}

impl From<EDHOCSuite> for u8 {
    fn from(suite: EDHOCSuite) -> u8 {
        suite as u8
    }
}

#[derive(PartialEq, Debug)]
#[non_exhaustive]
pub enum EDHOCError {
    /// In an exchange, a credential was set as "expected", but the credential configured by the
    /// peer did not match what was presented. This is more an application internal than an EDHOC
    /// error: When the application sets the expected credential, that process should be informed
    /// by the known details.
    UnexpectedCredential,
    MissingIdentity,
    IdentityAlreadySet,
    MacVerificationFailed,
    UnsupportedMethod,
    UnsupportedCipherSuite,
    ParsingError,
    EncodingError,
    CredentialTooLongError,
    EadLabelTooLongError,
    EadTooLongError,
    /// An EAD was received that was either not known (and critical), or not understood, or
    /// otherwise erroneous.
    EADUnprocessable,
    /// The credential or EADs could be processed (possibly by a third party), but the decision
    /// based on that was to not to continue the EDHOC session.
    ///
    /// See also
    /// <https://datatracker.ietf.org/doc/html/draft-ietf-lake-authz#name-edhoc-error-access-denied>
    AccessDenied,
}

impl EDHOCError {
    /// The ERR_CODE corresponding to the error
    ///
    /// Errors that refer to internal limitations (such as EadTooLongError) are treated the same
    /// way as parsing errors, and return an unspecified error: Those are equivalent to limitations
    /// of the parser, and a constrained system can not be expected to differentiate between "the
    /// standard allows this but my number space is too small" and "this violates the standard".
    ///
    /// If an EDHOCError is returned through EDHOC, it will use this in its EDHOC error message.
    ///
    /// Note that this on its own is insufficient to create an error message: Additional ERR_INFO
    /// is needed, which may or may not be available with the EDHOCError alone.
    ///
    /// TODO: Evolve the EDHOCError type such that all information needed is available.
    pub fn err_code(&self) -> ErrCode {
        use EDHOCError::*;
        match self {
            UnexpectedCredential => ErrCode::UNSPECIFIED,
            MissingIdentity => ErrCode::UNSPECIFIED,
            IdentityAlreadySet => ErrCode::UNSPECIFIED,
            MacVerificationFailed => ErrCode::UNSPECIFIED,
            UnsupportedMethod => ErrCode::UNSPECIFIED,
            UnsupportedCipherSuite => ErrCode::WRONG_SELECTED_CIPHER_SUITE,
            ParsingError => ErrCode::UNSPECIFIED,
            EncodingError => ErrCode::UNSPECIFIED,
            CredentialTooLongError => ErrCode::UNSPECIFIED,
            EadLabelTooLongError => ErrCode::UNSPECIFIED,
            EadTooLongError => ErrCode::UNSPECIFIED,
            EADUnprocessable => ErrCode::UNSPECIFIED,
            AccessDenied => ErrCode::ACCESS_DENIED,
        }
    }
}

/// Representation of an EDHOC ERR_CODE
#[repr(C)]
pub struct ErrCode(pub NonZeroI16);

impl ErrCode {
    // The way these are initialized will be simplified once const_option is stable

    pub const UNSPECIFIED: Self = ErrCode(match NonZeroI16::new(1) {
        Some(v) => v,
        _ => unreachable!(),
    });
    pub const WRONG_SELECTED_CIPHER_SUITE: Self = ErrCode(match NonZeroI16::new(2) {
        Some(v) => v,
        _ => unreachable!(),
    });
    pub const UNKNOWN_CREDENTIAL: Self = ErrCode(match NonZeroI16::new(3) {
        Some(v) => v,
        _ => unreachable!(),
    });
    // Code requested in https://datatracker.ietf.org/doc/html/draft-ietf-lake-authz
    pub const ACCESS_DENIED: Self = ErrCode(match NonZeroI16::new(3333) {
        Some(v) => v,
        _ => unreachable!(),
    });
}

#[derive(Debug)]
#[repr(C)]
pub struct InitiatorStart {
    pub suites_i: EdhocBuffer<MAX_SUITES_LEN>,
    pub method: u8,
    pub x: BytesP256ElemLen,   // ephemeral private key of myself
    pub g_x: BytesP256ElemLen, // ephemeral public key of myself
}

#[derive(Debug)]
pub struct ResponderStart {
    pub method: u8,
    pub y: BytesP256ElemLen,   // ephemeral private key of myself
    pub g_y: BytesP256ElemLen, // ephemeral public key of myself
}

#[derive(Default, Debug)]
pub struct ProcessingM1 {
    pub y: BytesP256ElemLen,
    pub g_y: BytesP256ElemLen,
    pub c_i: ConnId,
    pub g_x: BytesP256ElemLen, // ephemeral public key of the initiator
    pub h_message_1: BytesHashLen,
}

#[derive(Default, Clone, Debug)]
#[repr(C)]
pub struct WaitM2 {
    pub x: BytesP256ElemLen, // ephemeral private key of the initiator
    pub h_message_1: BytesHashLen,
}

#[derive(Default, Debug)]
pub struct WaitM3 {
    pub y: BytesP256ElemLen, // ephemeral private key of the responder
    pub prk_3e2m: BytesHashLen,
    pub th_3: BytesHashLen,
}

#[derive(Debug, Default)]
#[repr(C)]
pub struct ProcessingM2 {
    pub mac_2: BytesMac2,
    pub prk_2e: BytesHashLen,
    pub th_2: BytesHashLen,
    pub x: BytesP256ElemLen,
    pub g_y: BytesP256ElemLen,
    pub plaintext_2: EdhocMessageBuffer,
    pub c_r: ConnId,
    pub id_cred_r: IdCred,
    pub ead_2: Option<EADItem>,
}

#[derive(Default, Debug)]
#[repr(C)]
pub struct ProcessedM2 {
    pub prk_3e2m: BytesHashLen,
    pub prk_4e3m: BytesHashLen,
    pub th_3: BytesHashLen,
}

#[derive(Default, Debug)]
pub struct ProcessingM3 {
    pub mac_3: BytesMac3,
    pub y: BytesP256ElemLen, // ephemeral private key of the responder
    pub prk_3e2m: BytesHashLen,
    pub th_3: BytesHashLen,
    pub id_cred_i: IdCred,
    pub plaintext_3: EdhocMessageBuffer,
    pub ead_3: Option<EADItem>,
}

#[derive(Debug)]
pub struct PreparingM3 {
    pub prk_3e2m: BytesHashLen,
    pub prk_4e3m: BytesHashLen,
    pub th_3: BytesHashLen,
    pub mac_3: BytesMac3,
}

#[derive(Default, Debug)]
#[repr(C)]
pub struct Completed {
    pub prk_out: BytesHashLen,
    pub prk_exporter: BytesHashLen,
}

#[cfg_attr(feature = "python-bindings", pyclass(eq, eq_int))]
#[derive(Copy, Clone, Debug, PartialEq)]
#[repr(C)]
pub enum CredentialTransfer {
    ByReference,
    ByValue,
}

#[derive(PartialEq, Debug)]
#[repr(C)]
pub enum MessageBufferError {
    BufferAlreadyFull,
    SliceTooLong,
}

/// An owned u8 vector of a limited length
///
/// It is used to represent the various messages in encrypted and in decrypted form, as well as
/// other data items. Its maximum length is [MAX_MESSAGE_SIZE_LEN].
#[repr(C)]
#[derive(PartialEq, Debug, Copy, Clone)]
pub struct EdhocMessageBuffer {
    pub content: [u8; MAX_MESSAGE_SIZE_LEN],
    pub len: usize,
}

impl Default for EdhocMessageBuffer {
    fn default() -> Self {
        EdhocMessageBuffer {
            content: [0; MAX_MESSAGE_SIZE_LEN],
            len: 0,
        }
    }
}

impl EdhocMessageBuffer {
    pub fn new() -> Self {
        EdhocMessageBuffer {
            content: [0u8; MAX_MESSAGE_SIZE_LEN],
            len: 0,
        }
    }

    pub fn new_from_slice(slice: &[u8]) -> Result<Self, MessageBufferError> {
        let mut buffer = Self::new();
        if buffer.fill_with_slice(slice).is_ok() {
            Ok(buffer)
        } else {
            Err(MessageBufferError::SliceTooLong)
        }
    }

    pub fn get(self, index: usize) -> Option<u8> {
        self.content.get(index).copied()
    }

    pub fn push(&mut self, item: u8) -> Result<(), MessageBufferError> {
        if self.len < self.content.len() {
            self.content[self.len] = item;
            self.len += 1;
            Ok(())
        } else {
            Err(MessageBufferError::BufferAlreadyFull)
        }
    }

    pub fn get_slice(&self, start: usize, len: usize) -> Option<&[u8]> {
        self.content.get(start..start + len)
    }

    pub fn as_slice(&self) -> &[u8] {
        &self.content[0..self.len]
    }

    pub fn fill_with_slice(&mut self, slice: &[u8]) -> Result<(), MessageBufferError> {
        if slice.len() <= self.content.len() {
            self.len = slice.len();
            self.content[..self.len].copy_from_slice(slice);
            Ok(())
        } else {
            Err(MessageBufferError::SliceTooLong)
        }
    }

    pub fn extend_from_slice(&mut self, slice: &[u8]) -> Result<(), MessageBufferError> {
        if self.len + slice.len() <= self.content.len() {
            self.content[self.len..self.len + slice.len()].copy_from_slice(slice);
            self.len += slice.len();
            Ok(())
        } else {
            Err(MessageBufferError::SliceTooLong)
        }
    }

    pub fn from_hex(hex: &str) -> Self {
        let mut buffer = EdhocMessageBuffer::new();
        buffer.len = hex.len() / 2;
        for (i, chunk) in hex.as_bytes().chunks(2).enumerate() {
            let chunk_str = core::str::from_utf8(chunk).unwrap();
            buffer.content[i] = u8::from_str_radix(chunk_str, 16).unwrap();
        }
        buffer
    }
}

impl TryInto<EdhocMessageBuffer> for &[u8] {
    type Error = ();

    fn try_into(self) -> Result<EdhocMessageBuffer, Self::Error> {
        let mut buffer = [0u8; MAX_MESSAGE_SIZE_LEN];
        if self.len() <= buffer.len() {
            buffer[..self.len()].copy_from_slice(self);

            Ok(EdhocMessageBuffer {
                content: buffer,
                len: self.len(),
            })
        } else {
            Err(())
        }
    }
}

#[cfg_attr(feature = "python-bindings", pyclass)]
#[derive(Clone, Debug)]
pub struct EADItem {
    pub label: u8,
    pub is_critical: bool,
    // TODO[ead]: have adjustable (smaller) length for this buffer
    pub value: Option<EdhocMessageBuffer>,
}

impl EADItem {
    pub fn new() -> Self {
        EADItem {
            label: 0,
            is_critical: false,
            value: None,
        }
    }
}

mod helpers {
    use super::*;

    pub fn encode_info(
        label: u8,
        context: &BytesMaxContextBuffer,
        context_len: usize,
        length: usize,
    ) -> (BytesMaxInfoBuffer, usize) {
        let mut info: BytesMaxInfoBuffer = [0x00; MAX_INFO_LEN];

        // construct info with inline cbor encoding
        info[0] = label;
        let mut info_len = if context_len < 24 {
            info[1] = context_len as u8 | CBOR_MAJOR_BYTE_STRING;
            info[2..2 + context_len].copy_from_slice(&context[..context_len]);
            2 + context_len
        } else {
            info[1] = CBOR_BYTE_STRING;
            info[2] = context_len as u8;
            info[3..3 + context_len].copy_from_slice(&context[..context_len]);
            3 + context_len
        };

        info_len = if length < 24 {
            info[info_len] = length as u8;
            info_len + 1
        } else {
            info[info_len] = CBOR_UINT_1BYTE;
            info[info_len + 1] = length as u8;
            info_len + 2
        };

        (info, info_len)
    }
}

// TODO: move to own file (or even to the main crate, once EAD is extracted as an external dependency)
mod edhoc_parser {
    use super::*;

    pub fn parse_ead(buffer: &[u8]) -> Result<Option<EADItem>, EDHOCError> {
        trace!("Enter parse_ead");
        // assuming label is a single byte integer (negative or positive)
        if let Some((&label, tail)) = buffer.split_first() {
            let label_res = if CBORDecoder::is_u8(label) {
                // CBOR unsigned integer (0..=23)
                Ok((label, false))
            } else if CBORDecoder::is_i8(label) {
                // CBOR negative integer (-1..=-24)
                Ok((label - (CBOR_NEG_INT_1BYTE_START - 1), true))
            } else {
                Err(EDHOCError::ParsingError)
            };

            if let Ok((label, is_critical)) = label_res {
                let ead_value = if tail.len() > 0 {
                    // EAD value is present
                    let mut buffer = EdhocMessageBuffer::new();
                    buffer.fill_with_slice(tail).unwrap(); // TODO(hax): this *should* not panic due to the buffer sizes passed from upstream functions. can we prove it with hax?
                    buffer.len = tail.len();
                    Some(buffer)
                } else {
                    None
                };
                let ead_item = Some(EADItem {
                    label,
                    is_critical,
                    value: ead_value,
                });
                Ok(ead_item)
            } else {
                Err(EDHOCError::ParsingError)
            }
        } else {
            Err(EDHOCError::ParsingError)
        }
    }

    pub fn parse_suites_i(
        mut decoder: CBORDecoder,
    ) -> Result<(EdhocBuffer<MAX_SUITES_LEN>, CBORDecoder), EDHOCError> {
        trace!("Enter parse_suites_i");
        let mut suites_i: EdhocBuffer<MAX_SUITES_LEN> = Default::default();
        if let Ok(curr) = decoder.current() {
            if CBOR_UINT_1BYTE_START == CBORDecoder::type_of(curr) {
                let Ok(_) = suites_i.push(decoder.u8()?) else {
                    return Err(EDHOCError::ParsingError);
                };
                Ok((suites_i, decoder))
            } else if CBOR_MAJOR_ARRAY == CBORDecoder::type_of(curr)
                && CBORDecoder::info_of(curr) >= 2
            {
                // NOTE: arrays must be at least 2 items long, otherwise the compact encoding (int) must be used
                let received_suites_i_len = decoder.array()?;
                if received_suites_i_len <= suites_i.capacity() {
                    for i in 0..received_suites_i_len {
                        // NOTE: could use suites_i.push, but hax complains about mutable references in loops
                        suites_i.content[i] = decoder.u8()?;
                    }
                    suites_i.len = received_suites_i_len;
                    Ok((suites_i, decoder))
                } else {
                    Err(EDHOCError::ParsingError)
                }
            } else {
                Err(EDHOCError::ParsingError)
            }
        } else {
            Err(EDHOCError::ParsingError)
        }
    }

    pub fn parse_message_1(
        rcvd_message_1: &BufferMessage1,
    ) -> Result<
        (
            u8,
            EdhocBuffer<MAX_SUITES_LEN>,
            BytesP256ElemLen,
            ConnId,
            Option<EADItem>,
        ),
        EDHOCError,
    > {
        trace!("Enter parse_message_1");
        let mut decoder = CBORDecoder::new(rcvd_message_1.as_slice());
        let method = decoder.u8()?;

        if let Ok((suites_i, mut decoder)) = parse_suites_i(decoder) {
            let mut g_x: BytesP256ElemLen = [0x00; P256_ELEM_LEN];
            g_x.copy_from_slice(decoder.bytes_sized(P256_ELEM_LEN)?);

            // consume c_i encoded as single-byte int (we still do not support bstr encoding)
            let c_i = ConnId::from_decoder(&mut decoder)?;

            // if there is still more to parse, the rest will be the EAD_1
            if rcvd_message_1.len > decoder.position() {
                // NOTE: since the current implementation only supports one EAD handler,
                // we assume only one EAD item
                let ead_res = parse_ead(decoder.remaining_buffer()?);
                if let Ok(ead_1) = ead_res {
                    Ok((method, suites_i, g_x, c_i, ead_1))
                } else {
                    Err(ead_res.unwrap_err())
                }
            } else if decoder.finished() {
                Ok((method, suites_i, g_x, c_i, None))
            } else {
                Err(EDHOCError::ParsingError)
            }
        } else {
            Err(EDHOCError::ParsingError)
        }
    }

    pub fn parse_message_2(
        rcvd_message_2: &BufferMessage2,
    ) -> Result<(BytesP256ElemLen, BufferCiphertext2), EDHOCError> {
        trace!("Enter parse_message_2");
        // FIXME decode negative integers as well
        let mut ciphertext_2: BufferCiphertext2 = BufferCiphertext2::new();

        let mut decoder = CBORDecoder::new(rcvd_message_2.as_slice());

        // message_2 consists of 1 bstr element; this element in turn contains the concatenation of g_y and ciphertext_2
        let decoded = decoder.bytes()?;
        if decoder.finished() {
            if let Some(key) = decoded.get(0..P256_ELEM_LEN) {
                let mut g_y: BytesP256ElemLen = [0x00; P256_ELEM_LEN];
                g_y.copy_from_slice(key);
                if let Some(c2) = decoded.get(P256_ELEM_LEN..) {
                    if ciphertext_2.fill_with_slice(c2).is_ok() {
                        Ok((g_y, ciphertext_2))
                    } else {
                        Err(EDHOCError::ParsingError)
                    }
                } else {
                    Err(EDHOCError::ParsingError)
                }
            } else {
                Err(EDHOCError::ParsingError)
            }
        } else {
            Err(EDHOCError::ParsingError)
        }
    }

    pub fn decode_plaintext_2(
        plaintext_2: &BufferCiphertext2,
    ) -> Result<(ConnId, IdCred, BytesMac2, Option<EADItem>), EDHOCError> {
        trace!("Enter decode_plaintext_2");
        let mut mac_2: BytesMac2 = [0x00; MAC_LENGTH_2];

        let mut decoder = CBORDecoder::new(plaintext_2.as_slice());

        let c_r = ConnId::from_decoder(&mut decoder)?;

        // the id_cred may have been encoded as a single int, a byte string, or a map
        let id_cred_r = IdCred::from_encoded_value(decoder.any_as_encoded()?)?;

        mac_2[..].copy_from_slice(decoder.bytes_sized(MAC_LENGTH_2)?);

        // if there is still more to parse, the rest will be the EAD_2
        if plaintext_2.len > decoder.position() {
            // assume only one EAD item
            let ead_res = parse_ead(decoder.remaining_buffer()?);
            if let Ok(ead_2) = ead_res {
                Ok((c_r, id_cred_r, mac_2, ead_2))
            } else {
                Err(ead_res.unwrap_err())
            }
        } else if decoder.finished() {
            Ok((c_r, id_cred_r, mac_2, None))
        } else {
            Err(EDHOCError::ParsingError)
        }
    }

    pub fn decode_plaintext_3(
        plaintext_3: &BufferPlaintext3,
    ) -> Result<(IdCred, BytesMac3, Option<EADItem>), EDHOCError> {
        trace!("Enter decode_plaintext_3");
        let mut mac_3: BytesMac3 = [0x00; MAC_LENGTH_3];

        let mut decoder = CBORDecoder::new(plaintext_3.as_slice());

        // the id_cred may have been encoded as a single int, a byte string, or a map
        let id_cred_i = IdCred::from_encoded_value(decoder.any_as_encoded()?)?;

        mac_3[..].copy_from_slice(decoder.bytes_sized(MAC_LENGTH_3)?);

        // if there is still more to parse, the rest will be the EAD_3
        if plaintext_3.len > decoder.position() {
            // assume only one EAD item
            let ead_res = parse_ead(decoder.remaining_buffer()?);
            if let Ok(ead_3) = ead_res {
                Ok((id_cred_i, mac_3, ead_3))
            } else {
                Err(ead_res.unwrap_err())
            }
        } else if decoder.finished() {
            Ok((id_cred_i, mac_3, None))
        } else {
            Err(EDHOCError::ParsingError)
        }
    }
}

mod cbor_decoder {
    /// Decoder inspired by the [minicbor](https://crates.io/crates/minicbor) crate.
    use super::*;

    #[derive(Debug)]
    pub enum CBORError {
        DecodingError,
    }

    impl From<CBORError> for EDHOCError {
        fn from(error: CBORError) -> Self {
            match error {
                CBORError::DecodingError => EDHOCError::ParsingError,
            }
        }
    }

    #[derive(Debug)]
    pub struct CBORDecoder<'a> {
        buf: &'a [u8],
        pos: usize,
    }

    impl<'a> CBORDecoder<'a> {
        pub fn new(bytes: &'a [u8]) -> Self {
            CBORDecoder { buf: bytes, pos: 0 }
        }

        fn read(&mut self) -> Result<u8, CBORError> {
            if let Some(b) = self.buf.get(self.pos) {
                self.pos += 1;
                Ok(*b)
            } else {
                Err(CBORError::DecodingError)
            }
        }

        /// Consume and return *n* bytes starting at the current position.
        pub fn read_slice(&mut self, n: usize) -> Result<&'a [u8], CBORError> {
            if let Some(b) = self
                .pos
                .checked_add(n)
                .and_then(|end| self.buf.get(self.pos..end))
            {
                self.pos += n;
                Ok(b)
            } else {
                Err(CBORError::DecodingError)
            }
        }

        pub fn position(&self) -> usize {
            self.pos
        }

        pub fn finished(&self) -> bool {
            self.pos == self.buf.len()
        }

        pub fn ensure_finished(&self) -> Result<(), CBORError> {
            if self.finished() {
                Ok(())
            } else {
                Err(CBORError::DecodingError)
            }
        }

        pub fn remaining_buffer(&self) -> Result<&[u8], CBORError> {
            if let Some(buffer) = self.buf.get(self.pos..) {
                Ok(buffer)
            } else {
                Err(CBORError::DecodingError)
            }
        }

        /// Get the byte at the current position.
        pub fn current(&self) -> Result<u8, CBORError> {
            if let Some(b) = self.buf.get(self.pos) {
                Ok(*b)
            } else {
                Err(CBORError::DecodingError)
            }
        }

        /// Decode a `u8` value.
        pub fn u8(&mut self) -> Result<u8, CBORError> {
            let n = self.read()?;
            // NOTE: thid could be a `match` with `n @ 0x00..=0x17` clauses but hax doesn't support it
            if (0..=0x17).contains(&n) {
                Ok(n)
            } else if 0x18 == n {
                self.read()
            } else {
                Err(CBORError::DecodingError)
            }
        }

        /// Decode an `i8` value.
        pub fn i8(&mut self) -> Result<i8, CBORError> {
            let n = self.read()?;
            if (0..=0x17).contains(&n) {
                Ok(n as i8)
            } else if (0x20..=0x37).contains(&n) {
                Ok(-1 - (n - 0x20) as i8)
            } else if 0x18 == n {
                Ok(self.read()? as i8)
            } else if 0x38 == n {
                Ok(-1 - (self.read()? - 0x20) as i8)
            } else {
                Err(CBORError::DecodingError)
            }
        }

        /// Get the raw `i8` or `u8` value.
        pub fn int_raw(&mut self) -> Result<u8, CBORError> {
            let n = self.read()?;
            if (0..=0x17).contains(&n) || (0x20..=0x37).contains(&n) {
                Ok(n)
            } else {
                Err(CBORError::DecodingError)
            }
        }

        /// Decode a string slice.
        pub fn str(&mut self) -> Result<&'a [u8], CBORError> {
            let b = self.read()?;
            if CBOR_MAJOR_TEXT_STRING != Self::type_of(b) || Self::info_of(b) == 31 {
                Err(CBORError::DecodingError)
            } else {
                let n = self.as_usize(Self::info_of(b))?;
                self.read_slice(n)
            }
        }

        /// Decode a byte slice.
        pub fn bytes(&mut self) -> Result<&'a [u8], CBORError> {
            let b = self.read()?;
            if CBOR_MAJOR_BYTE_STRING != Self::type_of(b) || Self::info_of(b) == 31 {
                Err(CBORError::DecodingError)
            } else {
                let n = self.as_usize(Self::info_of(b))?;
                self.read_slice(n)
            }
        }

        /// Decode a byte slice of an expected size.
        pub fn bytes_sized(&mut self, expected_size: usize) -> Result<&'a [u8], CBORError> {
            let res = self.bytes()?;
            if res.len() == expected_size {
                Ok(res)
            } else {
                Err(CBORError::DecodingError)
            }
        }

        /// Begin decoding an array.
        pub fn array(&mut self) -> Result<usize, CBORError> {
            let b = self.read()?;
            if CBOR_MAJOR_ARRAY != Self::type_of(b) {
                Err(CBORError::DecodingError)
            } else {
                match Self::info_of(b) {
                    31 => Err(CBORError::DecodingError), // no support for unknown size arrays
                    n => Ok(self.as_usize(n)?),
                }
            }
        }

        /// Begin decoding a map.
        pub fn map(&mut self) -> Result<usize, CBORError> {
            let b = self.read()?;
            if CBOR_MAJOR_MAP != Self::type_of(b) {
                Err(CBORError::DecodingError)
            } else {
                match Self::info_of(b) {
                    n if n < 24 => Ok(self.as_usize(n)?),
                    _ => Err(CBORError::DecodingError), // no support for long or indeterminate size
                }
            }
        }

        /// Decode a `u8` value into usize.
        pub fn as_usize(&mut self, b: u8) -> Result<usize, CBORError> {
            if (0..=0x17).contains(&b) {
                Ok(usize::from(b))
            } else if 0x18 == b {
                self.read().map(usize::from)
            } else {
                Err(CBORError::DecodingError)
            }
        }

        /// Get the major type info of the given byte (highest 3 bits).
        pub fn type_of(b: u8) -> u8 {
            b & 0b111_00000
        }

        /// Get the additionl type info of the given byte (lowest 5 bits).
        pub fn info_of(b: u8) -> u8 {
            b & 0b000_11111
        }

        /// Check for: an unsigned integer encoded as a single byte
        pub fn is_u8(byte: u8) -> bool {
            byte >= CBOR_UINT_1BYTE_START && byte <= CBOR_UINT_1BYTE_END
        }

        /// Check for: a negative integer encoded as a single byte
        pub fn is_i8(byte: u8) -> bool {
            byte >= CBOR_NEG_INT_1BYTE_START && byte <= CBOR_NEG_INT_1BYTE_END
        }

        /// Decode any (supported) CBOR item, but ignore its internal structure and just return the
        /// encoded data.
        ///
        /// To have bound memory requirements, this depends on the encoded data to be in
        /// deterministic encoding, thus not having any indeterminate length items.
        pub fn any_as_encoded(&mut self) -> Result<&'a [u8], CBORError> {
            let mut remaining_items = 1;
            let start = self.position();

            // Instead of `while remaining_items > 0`, this loop helps hax to see that the loop
            // terminates. As every loop iteration advances the cursor by at least 1, the iteration
            // bound introduced by the for loop will never be reached, and the loop only terminates
            // through the remaining_items condition or a failure to read.
            //
            // I trust (but did not verify) that the Rust compiler can make something sensible out
            // of this (especially not keep looping needlessly) and doesn't do anything worse than
            // keep a limited loop counter.
            for _ in self.buf.iter() {
                if remaining_items > 0 {
                    remaining_items -= 1;
                    let head = self.read()?;
                    let major = head >> 5;
                    let minor = head & 0x1f;
                    let argument = match minor {
                        0..=23 => minor,
                        24 => self.read()?,
                        // We do not support values outside the range -256..256.
                        // FIXME: Sooner or later we should. There is probably an upper bound on
                        // lengths we need to support (we don't need to support 32bit integer decoding
                        // for map keys when our maximum buffers are 256 long); will split things up
                        // here into major-0/1/6/7 where we can just skip 1/2/4/8 bytes vs. the other
                        // majors where this is an out-of-bounds error anyway, or just have up to 64bit
                        // decoding available consistently for all?
                        25 | 26 | 27 => return Err(CBORError::DecodingError),
                        // Reserved, not well-formed
                        28 | 29 | 30 => return Err(CBORError::DecodingError),
                        // Indefinite length markers are forbidden in deterministic CBOR (or it's one
                        // of the major types where this is just not well-formed)
                        31 => return Err(CBORError::DecodingError),
                        _ => unreachable!("Value was masked to 5 bits"),
                    };
                    match major {
                        0..=1 => (), // Argument consumed, remaining items were already decremented
                        7 => (), // Same, but in separate line due to Hax FStar backend limitations
                        6 => {
                            remaining_items += 1;
                        }
                        2..=3 => {
                            self.read_slice(argument.into())?;
                        }
                        4 => {
                            remaining_items += argument;
                        }
                        5 => {
                            remaining_items += argument * 2;
                        }
                        _ => unreachable!("Value is result of a right shift trimming it to 3 bits"),
                    }
                }
            }

            Ok(&self.buf[start..self.position()])
        }
    }
}

#[cfg(test)]
mod test_cbor_decoder {
    use super::cbor_decoder::*;
    use hexlit::hex;

    #[test]
    fn test_cbor_decoder() {
        // CBOR sequence: 1, -1, "hi", h'fefe'
        let input = [0x01, 0x20, 0x62, 0x68, 0x69, 0x42, 0xFE, 0xFE];
        let mut decoder = CBORDecoder::new(&input);

        assert_eq!(1, decoder.u8().unwrap());
        assert_eq!(-1, decoder.i8().unwrap());
        assert_eq!([0x68, 0x69], decoder.str().unwrap()); // "hi"
        assert_eq!([0xFE, 0xFE], decoder.bytes().unwrap());
    }

    #[test]
    fn test_cbor_decoder_any_as_decoded() {
        // {"bytes": 'val', "n": 123, "tagged": 255(["a", -1]), "deep": [[[[[[[[[[[[[[[[[[[[[[]]]]]]]]]]]]]]]]]]]]], {1: {2: {3: {4: [simple(0), true, null, simple(128)]}}}}]}
        // Note we can't have floats b/c we don't skip long arguments yet (and all floats have
        // minor 25 or longer).
        let input = hex!("A46562797465734376616C616E187B66746167676564D8FF82616120646465657082818181818181818181818181818181818181818180A101A102A103A10484E0F5F6F880");
        let mut decoder = CBORDecoder::new(&input);

        assert_eq!(input, decoder.any_as_encoded().unwrap());
        assert!(decoder.finished())
    }
}