laddu_python/data.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
use crate::utils::variables::PyVariable;
use laddu_core::{
data::{open, BinnedDataset, Dataset, Event},
Float,
};
use numpy::PyArray1;
use pyo3::{exceptions::PyIndexError, prelude::*};
use std::sync::Arc;
use crate::utils::vectors::{PyVector3, PyVector4};
/// A single event
///
/// Events are composed of a set of 4-momenta of particles in the overall
/// center-of-momentum frame, polarizations or helicities described by 3-vectors, and a
/// weight
///
/// Parameters
/// ----------
/// p4s : list of Vector4
/// 4-momenta of each particle in the event in the overall center-of-momentum frame
/// eps : list of Vector3
/// 3-vectors describing the polarization or helicity of the particles
/// given in `p4s`
/// weight : float
/// The weight associated with this event
///
#[pyclass(name = "Event", module = "laddu")]
#[derive(Clone)]
pub struct PyEvent(pub Arc<Event>);
#[pymethods]
impl PyEvent {
#[new]
fn new(p4s: Vec<PyVector4>, eps: Vec<PyVector3>, weight: Float) -> Self {
Self(Arc::new(Event {
p4s: p4s.into_iter().map(|arr| arr.0).collect(),
eps: eps.into_iter().map(|arr| arr.0).collect(),
weight,
}))
}
fn __str__(&self) -> String {
self.0.to_string()
}
/// The list of 4-momenta for each particle in the event
///
#[getter]
fn get_p4s(&self) -> Vec<PyVector4> {
self.0.p4s.iter().map(|p4| PyVector4(*p4)).collect()
}
/// The list of 3-vectors describing the polarization or helicity of particles in
/// the event
///
#[getter]
fn get_eps(&self) -> Vec<PyVector3> {
self.0
.eps
.iter()
.map(|eps_vec| PyVector3(*eps_vec))
.collect()
}
/// The weight of this event relative to others in a Dataset
///
#[getter]
fn get_weight(&self) -> Float {
self.0.weight
}
/// Get the sum of the four-momenta within the event at the given indices
///
/// Parameters
/// ----------
/// indices : list of int
/// The indices of the four-momenta to sum
///
/// Returns
/// -------
/// Vector4
/// The result of summing the given four-momenta
///
fn get_p4_sum(&self, indices: Vec<usize>) -> PyVector4 {
PyVector4(self.0.get_p4_sum(indices))
}
}
/// A set of Events
///
/// Datasets can be created from lists of Events or by using the provided ``laddu.open`` function
///
/// Datasets can also be indexed directly to access individual Events
///
/// Parameters
/// ----------
/// events : list of Event
///
/// See Also
/// --------
/// laddu.open
///
#[pyclass(name = "Dataset", module = "laddu")]
#[derive(Clone)]
pub struct PyDataset(pub Arc<Dataset>);
#[pymethods]
impl PyDataset {
#[new]
fn new(events: Vec<PyEvent>) -> Self {
Self(Arc::new(Dataset {
events: events.into_iter().map(|event| event.0).collect(),
}))
}
fn __len__(&self) -> usize {
self.0.len()
}
/// Get the number of Events in the Dataset
///
/// Returns
/// -------
/// n_events : int
/// The number of Events
///
fn len(&self) -> usize {
self.0.len()
}
/// Get the weighted number of Events in the Dataset
///
/// Returns
/// -------
/// n_events : float
/// The sum of all Event weights
///
fn weighted_len(&self) -> Float {
self.0.weighted_len()
}
/// The weights associated with the Dataset
///
/// Returns
/// -------
/// weights : array_like
/// A ``numpy`` array of Event weights
///
#[getter]
fn weights<'py>(&self, py: Python<'py>) -> Bound<'py, PyArray1<Float>> {
PyArray1::from_slice(py, &self.0.weights())
}
/// The internal list of Events stored in the Dataset
///
/// Returns
/// -------
/// events : list of Event
/// The Events in the Dataset
///
#[getter]
fn events(&self) -> Vec<PyEvent> {
self.0
.events
.iter()
.map(|rust_event| PyEvent(rust_event.clone()))
.collect()
}
fn __getitem__(&self, index: usize) -> PyResult<PyEvent> {
self.0
.get(index)
.ok_or(PyIndexError::new_err("index out of range"))
.map(|rust_event| PyEvent(rust_event.clone()))
}
/// Separates a Dataset into histogram bins by a Variable value
///
/// Parameters
/// ----------
/// variable : {laddu.Mass, laddu.CosTheta, laddu.Phi, laddu.PolAngle, laddu.PolMagnitude, laddu.Mandelstam}
/// The Variable by which each Event is binned
/// bins : int
/// The number of equally-spaced bins
/// range : tuple[float, float]
/// The minimum and maximum bin edges
///
/// Returns
/// -------
/// datasets : BinnedDataset
/// A pub structure that holds a list of Datasets binned by the given `variable`
///
/// See Also
/// --------
/// laddu.Mass
/// laddu.CosTheta
/// laddu.Phi
/// laddu.PolAngle
/// laddu.PolMagnitude
/// laddu.Mandelstam
///
/// Raises
/// ------
/// TypeError
/// If the given `variable` is not a valid variable
///
#[pyo3(signature = (variable, bins, range))]
fn bin_by(
&self,
variable: Bound<'_, PyAny>,
bins: usize,
range: (Float, Float),
) -> PyResult<PyBinnedDataset> {
let py_variable = variable.extract::<PyVariable>()?;
Ok(PyBinnedDataset(self.0.bin_by(py_variable, bins, range)))
}
/// Generate a new bootstrapped Dataset by randomly resampling the original with replacement
///
/// The new Dataset is resampled with a random generator seeded by the provided `seed`
///
/// Parameters
/// ----------
/// seed : int
/// The random seed used in the resampling process
///
/// Returns
/// -------
/// Dataset
/// A bootstrapped Dataset
///
fn bootstrap(&self, seed: usize) -> PyDataset {
PyDataset(self.0.bootstrap(seed))
}
}
/// A collection of Datasets binned by a Variable
///
/// BinnedDatasets can be indexed directly to access the underlying Datasets by bin
///
/// See Also
/// --------
/// laddu.Dataset.bin_by
///
#[pyclass(name = "BinnedDataset", module = "laddu")]
pub struct PyBinnedDataset(BinnedDataset);
#[pymethods]
impl PyBinnedDataset {
fn __len__(&self) -> usize {
self.0.len()
}
/// Get the number of bins in the BinnedDataset
///
/// Returns
/// -------
/// n : int
/// The number of bins
fn len(&self) -> usize {
self.0.len()
}
/// The number of bins in the BinnedDataset
///
#[getter]
fn bins(&self) -> usize {
self.0.bins()
}
/// The minimum and maximum values of the binning Variable used to create this BinnedDataset
///
#[getter]
fn range(&self) -> (Float, Float) {
self.0.range()
}
/// The edges of each bin in the BinnedDataset
///
#[getter]
fn edges<'py>(&self, py: Python<'py>) -> Bound<'py, PyArray1<Float>> {
PyArray1::from_slice(py, &self.0.edges())
}
fn __getitem__(&self, index: usize) -> PyResult<PyDataset> {
self.0
.get(index)
.ok_or(PyIndexError::new_err("index out of range"))
.map(|rust_dataset| PyDataset(rust_dataset.clone()))
}
}
/// Open a Dataset from a file
///
/// Returns
/// -------
/// Dataset
///
/// Raises
/// ------
/// IOError
/// If the file could not be read
///
/// Warnings
/// --------
/// This method will panic/fail if the columns do not have the correct names or data types.
/// There is currently no way to make this nicer without a large performance dip (if you find a
/// way, please open a PR).
///
/// Notes
/// -----
/// Data should be stored in Parquet format with each column being filled with 32-bit floats
///
/// Valid/required column names have the following formats:
///
/// ``p4_{particle index}_{E|Px|Py|Pz}`` (four-momentum components for each particle)
///
/// ``eps_{particle index}_{x|y|z}`` (polarization/helicity vectors for each particle)
///
/// ``weight`` (the weight of the Event)
///
/// For example, the four-momentum of the 0th particle in the event would be stored in columns
/// with the names ``p4_0_E``, ``p4_0_Px``, ``p4_0_Py``, and ``p4_0_Pz``. That particle's
/// polarization could be stored in the columns ``eps_0_x``, ``eps_0_y``, and ``eps_0_z``. This
/// could continue for an arbitrary number of particles. The ``weight`` column is always
/// required.
///
#[pyfunction(name = "open")]
pub fn py_open(path: &str) -> PyResult<PyDataset> {
Ok(PyDataset(open(path)?))
}