laddu_core/lib.rs
1//! # laddu-core
2//!
3//! This is an internal crate used by `laddu`.
4#![warn(clippy::perf, clippy::style, missing_docs)]
5#![allow(clippy::excessive_precision)]
6
7use ganesh::swarms::{Particle, SwarmPositionInitializer};
8use ganesh::{Point, Swarm};
9#[cfg(feature = "python")]
10use pyo3::PyErr;
11
12/// MPI backend for `laddu`
13///
14/// Message Passing Interface (MPI) is a protocol which enables communication between multiple
15/// CPUs in a high-performance computing environment. While [`rayon`] can parallelize tasks on a
16/// single CPU, MPI can also parallelize tasks on multiple CPUs by running independent
17/// processes on all CPUs at once (tasks) which are assigned ids (ranks) which tell each
18/// process what to do and where to send results. This backend coordinates processes which would
19/// typically be parallelized over the events in a [`Dataset`](`crate::data::Dataset`).
20///
21/// To use this backend, the library must be built with the `mpi` feature, which requires an
22/// existing implementation of MPI like OpenMPI or MPICH. All processing code should be
23/// sandwiched between calls to [`use_mpi`] and [`finalize_mpi`]:
24/// ```ignore
25/// fn main() {
26/// laddu_core::mpi::use_mpi(true);
27/// // laddu analysis code here
28/// laddu_core::mpi::finalize_mpi();
29/// }
30/// ```
31///
32/// [`finalize_mpi`] must be called to trigger all the methods which clean up the MPI
33/// environment. While these are called by default when the [`Universe`](`mpi::environment::Universe`) is dropped, `laddu` uses a static `Universe` that can be accessed by all of the methods that need it, rather than passing the context to each method. This simplifies the way programs can be converted to use MPI, but means that the `Universe` is not automatically dropped at the end of the program (so it must be dropped manually).
34#[cfg(feature = "mpi")]
35pub mod mpi {
36 use std::sync::atomic::{AtomicBool, Ordering};
37 use std::sync::OnceLock;
38
39 use lazy_static::lazy_static;
40 use mpi::environment::Universe;
41 use mpi::topology::{Process, SimpleCommunicator};
42 use mpi::traits::Communicator;
43 use parking_lot::RwLock;
44
45 lazy_static! {
46 static ref USE_MPI: AtomicBool = AtomicBool::new(false);
47 }
48
49 static MPI_UNIVERSE: OnceLock<RwLock<Option<Universe>>> = OnceLock::new();
50
51 /// The default root rank for MPI processes
52 pub const ROOT_RANK: i32 = 0;
53
54 /// Check if the current MPI process is the root process
55 pub fn is_root() -> bool {
56 if let Some(world) = crate::mpi::get_world() {
57 world.rank() == ROOT_RANK
58 } else {
59 false
60 }
61 }
62
63 /// Shortcut method to just get the global MPI communicator without accessing `size` and `rank`
64 /// directly
65 pub fn get_world() -> Option<SimpleCommunicator> {
66 if let Some(universe_lock) = MPI_UNIVERSE.get() {
67 if let Some(universe) = &*universe_lock.read() {
68 let world = universe.world();
69 if world.size() == 1 {
70 return None;
71 }
72 return Some(world);
73 }
74 }
75 None
76 }
77
78 /// Get the rank of the current process
79 pub fn get_rank() -> Option<i32> {
80 get_world().map(|w| w.rank())
81 }
82
83 /// Get number of available processes/ranks
84 pub fn get_size() -> Option<i32> {
85 get_world().map(|w| w.size())
86 }
87
88 /// Use the MPI backend
89 ///
90 /// # Notes
91 ///
92 /// You must have MPI installed for this to work, and you must call the program with
93 /// `mpirun <executable>`, or bad things will happen.
94 ///
95 /// MPI runs an identical program on each process, but gives the program an ID called its
96 /// "rank". Only the results of methods on the root process (rank 0) should be
97 /// considered valid, as other processes only contain portions of each dataset. To ensure
98 /// you don't save or print data at other ranks, use the provided [`is_root()`]
99 /// method to check if the process is the root process.
100 ///
101 /// Once MPI is enabled, it cannot be disabled. If MPI could be toggled (which it can't),
102 /// the other processes will still run, but they will be independent of the root process
103 /// and will no longer communicate with it. The root process stores no data, so it would
104 /// be difficult (and convoluted) to get the results which were already processed via
105 /// MPI.
106 ///
107 /// Additionally, MPI must be enabled at the beginning of a script, at least before any
108 /// other `laddu` functions are called.
109 ///
110 /// If [`use_mpi()`] is called multiple times, the subsequent calls will have no
111 /// effect.
112 ///
113 /// <div class="warning">
114 ///
115 /// You **must** call [`finalize_mpi()`] before your program exits for MPI to terminate
116 /// smoothly.
117 ///
118 /// </div>
119 ///
120 /// # Examples
121 ///
122 /// ```ignore
123 /// fn main() {
124 /// laddu_core::use_mpi();
125 ///
126 /// // ... your code here ...
127 ///
128 /// laddu_core::finalize_mpi();
129 /// }
130 ///
131 /// ```
132 pub fn use_mpi(trigger: bool) {
133 if trigger {
134 USE_MPI.store(true, Ordering::SeqCst);
135 MPI_UNIVERSE.get_or_init(|| {
136 #[cfg(feature = "rayon")]
137 let threading = mpi::Threading::Funneled;
138 #[cfg(not(feature = "rayon"))]
139 let threading = mpi::Threading::Single;
140 let (universe, _threading) = mpi::initialize_with_threading(threading).unwrap();
141 let world = universe.world();
142 if world.size() == 1 {
143 eprintln!("Warning: MPI is enabled, but only one process is available. MPI will not be used, but single-CPU parallelism may still be used if enabled.");
144 finalize_mpi();
145 USE_MPI.store(false, Ordering::SeqCst);
146 RwLock::new(None)
147 } else {
148 RwLock::new(Some(universe))
149 }
150 });
151 }
152 }
153
154 /// Drop the MPI universe and finalize MPI at the end of a program
155 ///
156 /// This function will do nothing if MPI is not initialized.
157 ///
158 /// <div class="warning">
159 ///
160 /// This should only be called once and should be called at the end of all `laddu`-related
161 /// function calls. This must be called at the end of any program which uses MPI.
162 ///
163 /// </div>
164 pub fn finalize_mpi() {
165 if using_mpi() {
166 let mut universe = MPI_UNIVERSE.get().unwrap().write();
167 *universe = None;
168 }
169 }
170
171 /// Check if MPI backend is enabled
172 pub fn using_mpi() -> bool {
173 USE_MPI.load(Ordering::SeqCst)
174 }
175
176 /// A trait including some useful auxiliary methods for MPI
177 pub trait LadduMPI {
178 /// Get the process at the root rank
179 fn process_at_root(&self) -> Process<'_>;
180 /// Check if the current rank is the root rank
181 fn is_root(&self) -> bool;
182 /// Get the counts/displacements for partitioning a buffer of length
183 /// `buf_len`
184 fn get_counts_displs(&self, buf_len: usize) -> (Vec<i32>, Vec<i32>);
185 /// Get the counts/displacements for partitioning a nested buffer (like
186 /// a [`Vec<Vec<T>>`]). If the internal vectors all have the same length
187 /// `internal_len` and there are `unflattened_len` elements in the
188 /// outer vector, then this will give the correct counts/displacements for a
189 /// flattened version of the nested buffer.
190 fn get_flattened_counts_displs(
191 &self,
192 unflattened_len: usize,
193 internal_len: usize,
194 ) -> (Vec<i32>, Vec<i32>);
195 }
196
197 impl LadduMPI for SimpleCommunicator {
198 fn process_at_root(&self) -> Process<'_> {
199 self.process_at_rank(crate::mpi::ROOT_RANK)
200 }
201
202 fn is_root(&self) -> bool {
203 self.rank() == crate::mpi::ROOT_RANK
204 }
205
206 fn get_counts_displs(&self, buf_len: usize) -> (Vec<i32>, Vec<i32>) {
207 let mut counts = vec![0; self.size() as usize];
208 let mut displs = vec![0; self.size() as usize];
209 let chunk_size = buf_len / self.size() as usize;
210 let surplus = buf_len % self.size() as usize;
211 for i in 0..self.size() as usize {
212 counts[i] = if i < surplus {
213 chunk_size + 1
214 } else {
215 chunk_size
216 } as i32;
217 displs[i] = if i == 0 {
218 0
219 } else {
220 displs[i - 1] + counts[i - 1]
221 };
222 }
223 (counts, displs)
224 }
225
226 fn get_flattened_counts_displs(
227 &self,
228 unflattened_len: usize,
229 internal_len: usize,
230 ) -> (Vec<i32>, Vec<i32>) {
231 let mut counts = vec![0; self.size() as usize];
232 let mut displs = vec![0; self.size() as usize];
233 let chunk_size = unflattened_len / self.size() as usize;
234 let surplus = unflattened_len % self.size() as usize;
235 for i in 0..self.size() as usize {
236 counts[i] = if i < surplus {
237 (chunk_size + 1) * internal_len
238 } else {
239 chunk_size * internal_len
240 } as i32;
241 displs[i] = if i == 0 {
242 0
243 } else {
244 displs[i - 1] + counts[i - 1]
245 };
246 }
247 (counts, displs)
248 }
249 }
250}
251
252use thiserror::Error;
253
254/// [`Amplitude`](crate::amplitudes::Amplitude)s and methods for making and evaluating them.
255pub mod amplitudes;
256/// Methods for loading and manipulating [`Event`]-based data.
257pub mod data;
258/// Structures for manipulating the cache and free parameters.
259pub mod resources;
260/// Utility functions, enums, and traits
261pub mod utils;
262/// Useful traits for all crate structs
263pub mod traits {
264 pub use crate::amplitudes::Amplitude;
265 pub use crate::utils::variables::Variable;
266 pub use crate::ReadWrite;
267}
268
269pub use crate::data::{open, BinnedDataset, Dataset, Event};
270pub use crate::resources::{
271 Cache, ComplexMatrixID, ComplexScalarID, ComplexVectorID, MatrixID, ParameterID, Parameters,
272 Resources, ScalarID, VectorID,
273};
274pub use crate::utils::enums::{Channel, Frame, Sign};
275pub use crate::utils::variables::{
276 Angles, CosTheta, Mandelstam, Mass, Phi, PolAngle, PolMagnitude, Polarization,
277};
278pub use crate::utils::vectors::{Vec3, Vec4};
279pub use amplitudes::{
280 constant, parameter, AmplitudeID, Evaluator, Expression, Manager, Model, ParameterLike,
281};
282
283// Re-exports
284pub use ganesh::{Bound, Ensemble, Status};
285pub use nalgebra::DVector;
286pub use num::Complex;
287
288/// A floating-point number type (defaults to [`f64`], see `f32` feature).
289#[cfg(not(feature = "f32"))]
290pub type Float = f64;
291
292/// A floating-point number type (defaults to [`f64`], see `f32` feature).
293#[cfg(feature = "f32")]
294pub type Float = f32;
295
296/// The mathematical constant $`\pi`$.
297#[cfg(not(feature = "f32"))]
298pub const PI: Float = std::f64::consts::PI;
299
300/// The mathematical constant $`\pi`$.
301#[cfg(feature = "f32")]
302pub const PI: Float = std::f32::consts::PI;
303
304/// The error type used by all `laddu` internal methods
305#[derive(Error, Debug)]
306pub enum LadduError {
307 /// An alias for [`std::io::Error`].
308 #[error("IO Error: {0}")]
309 IOError(#[from] std::io::Error),
310 /// An alias for [`parquet::errors::ParquetError`].
311 #[error("Parquet Error: {0}")]
312 ParquetError(#[from] parquet::errors::ParquetError),
313 /// An alias for [`arrow::error::ArrowError`].
314 #[error("Arrow Error: {0}")]
315 ArrowError(#[from] arrow::error::ArrowError),
316 /// An alias for [`shellexpand::LookupError`].
317 #[error("Failed to expand path: {0}")]
318 LookupError(#[from] shellexpand::LookupError<std::env::VarError>),
319 /// An error which occurs when the user tries to register two amplitudes by the same name to
320 /// the same [`Manager`].
321 #[error("An amplitude by the name \"{name}\" is already registered by this manager!")]
322 RegistrationError {
323 /// Name of amplitude which is already registered
324 name: String,
325 },
326 /// An error which occurs when the user tries to use an unregistered amplitude.
327 #[error("No registered amplitude with name \"{name}\"!")]
328 AmplitudeNotFoundError {
329 /// Name of amplitude which failed lookup
330 name: String,
331 },
332 /// An error which occurs when the user tries to parse an invalid string of text, typically
333 /// into an enum variant.
334 #[error("Failed to parse string: \"{name}\" does not correspond to a valid \"{object}\"!")]
335 ParseError {
336 /// The string which was parsed
337 name: String,
338 /// The name of the object it failed to parse into
339 object: String,
340 },
341 /// An error returned by the Rust encoder
342 #[error("Encoder error: {0}")]
343 EncodeError(#[from] bincode::error::EncodeError),
344 /// An error returned by the Rust decoder
345 #[error("Decoder error: {0}")]
346 DecodeError(#[from] bincode::error::DecodeError),
347 /// An error returned by the Python pickle (de)serializer
348 #[error("Pickle conversion error: {0}")]
349 PickleError(#[from] serde_pickle::Error),
350 /// An error type for [`rayon`] thread pools
351 #[cfg(feature = "rayon")]
352 #[error("Error building thread pool: {0}")]
353 ThreadPoolError(#[from] rayon::ThreadPoolBuildError),
354 /// An error type for [`numpy`]-related conversions
355 #[cfg(feature = "numpy")]
356 #[error("Numpy error: {0}")]
357 NumpyError(#[from] numpy::FromVecError),
358 /// A custom fallback error for errors too complex or too infrequent to warrant their own error
359 /// category.
360 #[error("{0}")]
361 Custom(String),
362}
363
364impl Clone for LadduError {
365 // This is a little hack because error types are rarely cloneable, but I need to store them in a
366 // cloneable box for minimizers and MCMC methods
367 fn clone(&self) -> Self {
368 let err_string = self.to_string();
369 LadduError::Custom(err_string)
370 }
371}
372
373#[cfg(feature = "python")]
374impl From<LadduError> for PyErr {
375 fn from(err: LadduError) -> Self {
376 use pyo3::exceptions::*;
377 let err_string = err.to_string();
378 match err {
379 LadduError::LookupError(_)
380 | LadduError::RegistrationError { .. }
381 | LadduError::AmplitudeNotFoundError { .. }
382 | LadduError::ParseError { .. } => PyValueError::new_err(err_string),
383 LadduError::ParquetError(_)
384 | LadduError::ArrowError(_)
385 | LadduError::IOError(_)
386 | LadduError::EncodeError(_)
387 | LadduError::DecodeError(_)
388 | LadduError::PickleError(_) => PyIOError::new_err(err_string),
389 LadduError::Custom(_) => PyException::new_err(err_string),
390 #[cfg(feature = "rayon")]
391 LadduError::ThreadPoolError(_) => PyException::new_err(err_string),
392 #[cfg(feature = "numpy")]
393 LadduError::NumpyError(_) => PyException::new_err(err_string),
394 }
395 }
396}
397
398use serde::{de::DeserializeOwned, Serialize};
399use std::{
400 fmt::Debug,
401 fs::File,
402 io::{BufReader, BufWriter},
403 path::Path,
404};
405/// A trait which allows structs with [`Serialize`] and [`Deserialize`](`serde::Deserialize`) to be
406/// written and read from files with a certain set of types/extensions.
407///
408/// Currently, Python's pickle format is supported supported, since it's an easy-to-parse standard
409/// that supports floating point values better that JSON or TOML
410pub trait ReadWrite: Serialize + DeserializeOwned {
411 /// Create a null version of the object which acts as a shell into which Python's `pickle` module
412 /// can load data. This generally shouldn't be used to construct the struct in regular code.
413 fn create_null() -> Self;
414 /// Save a [`serde`]-object to a file path, using the extension to determine the file format
415 fn save_as<T: AsRef<str>>(&self, file_path: T) -> Result<(), LadduError> {
416 let expanded_path = shellexpand::full(file_path.as_ref())?;
417 let file_path = Path::new(expanded_path.as_ref());
418 let file = File::create(file_path)?;
419 let mut writer = BufWriter::new(file);
420 serde_pickle::to_writer(&mut writer, self, Default::default())?;
421 Ok(())
422 }
423 /// Load a [`serde`]-object from a file path, using the extension to determine the file format
424 fn load_from<T: AsRef<str>>(file_path: T) -> Result<Self, LadduError> {
425 let file_path = Path::new(&*shellexpand::full(file_path.as_ref())?).canonicalize()?;
426 let file = File::open(file_path)?;
427 let reader = BufReader::new(file);
428 serde_pickle::from_reader(reader, Default::default()).map_err(LadduError::from)
429 }
430}
431
432impl ReadWrite for Status {
433 fn create_null() -> Self {
434 Status::default()
435 }
436}
437impl ReadWrite for Ensemble {
438 fn create_null() -> Self {
439 Ensemble::new(Vec::default())
440 }
441}
442impl ReadWrite for Point {
443 fn create_null() -> Self {
444 Point::default()
445 }
446}
447impl ReadWrite for Particle {
448 fn create_null() -> Self {
449 Particle::default()
450 }
451}
452impl ReadWrite for Swarm {
453 fn create_null() -> Self {
454 Swarm::new(SwarmPositionInitializer::Zero {
455 n_particles: 0,
456 n_dimensions: 0,
457 })
458 }
459}
460impl ReadWrite for Model {
461 fn create_null() -> Self {
462 Model {
463 manager: Manager::default(),
464 expression: Expression::default(),
465 }
466 }
467}