Module functions

Source
Expand description

Standard special functions like spherical harmonics and momentum definitions.

Functionsยง

blatt_weisskopf
Computes the Blatt-Weisskopf centrifugal barrier factor for a particle with mass $m_0$ and angular momentum $\ell$ decaying to two particles with masses $m_1$ and $m_2$.
breakup_momentum
Computes the breakup momentum (often denoted $q$) for a particle with mass $m_0$ decaying into two particles with masses $m_1$ and $m_2$: $\frac{m_0 \left|\rho(m_0^2, m_1, m_2)\right|}{2}$.
chi_minus
Computes $\chi_-(s, m_1, m_2) = 1 - \frac{(m_1 - m_2)^2}{s}$.
chi_plus
Computes $\chi_+(s, m_1, m_2) = 1 - \frac{(m_1 + m_2)^2}{s}$.
complex_blatt_weisskopf
Computes the Blatt-Weisskopf centrifugal barrier factor for a particle with mass $m_0$ and angular momentum $\ell$ decaying to two particles with masses $m_1$ and $m_2$.
complex_breakup_momentum
Computes the breakup momentum (often denoted $q$) for a particle with mass $m_0$ decaying into two particles with masses $m_1$ and $m_2$: $\frac{m_0 \rho(m_0^2, m_1, m_2)}{2}$.
rho
Computes the phase-space factor $\rho(s, m_1, m_2) = \sqrt(\chi_+(s, m_1, m_2)\chi_-(s, m_1, m_2))$
spherical_harmonic
Computes the spherical harmonic $Y_{\ell}^m(\theta, \phi)$ (given $\cos\theta$). Note that this formulation includes the Condon-Shortley phase.