laddu_core/lib.rs
1//! # laddu-core
2//!
3//! This is an internal crate used by `laddu`.
4#![warn(clippy::perf, clippy::style, missing_docs)]
5
6use bincode::ErrorKind;
7#[cfg(feature = "python")]
8use pyo3::PyErr;
9
10/// MPI backend for `laddu`
11///
12/// Message Passing Interface (MPI) is a protocol which enables communication between multiple
13/// CPUs in a high-performance computing environment. While [`rayon`] can parallelize tasks on a
14/// single CPU, MPI can also parallelize tasks on multiple CPUs by running independent
15/// processes on all CPUs at once (tasks) which are assigned ids (ranks) which tell each
16/// process what to do and where to send results. This backend coordinates processes which would
17/// typically be parallelized over the events in a [`Dataset`](`crate::data::Dataset`).
18///
19/// To use this backend, the library must be built with the `mpi` feature, which requires an
20/// existing implementation of MPI like OpenMPI or MPICH. All processing code should be
21/// sandwiched between calls to [`use_mpi`] and [`finalize_mpi`]:
22/// ```ignore
23/// fn main() {
24/// laddu_core::mpi::use_mpi(true);
25/// // laddu analysis code here
26/// laddu_core::mpi::finalize_mpi();
27/// }
28/// ```
29///
30/// [`finalize_mpi`] must be called to trigger all the methods which clean up the MPI
31/// environment. While these are called by default when the [`Universe`](`mpi::environment::Universe`) is dropped, `laddu` uses a static `Universe` that can be accessed by all of the methods that need it, rather than passing the context to each method. This simplifies the way programs can be converted to use MPI, but means that the `Universe` is not automatically dropped at the end of the program (so it must be dropped manually).
32#[cfg(feature = "mpi")]
33pub mod mpi {
34 use std::sync::atomic::{AtomicBool, Ordering};
35 use std::sync::OnceLock;
36
37 use lazy_static::lazy_static;
38 use mpi::environment::Universe;
39 use mpi::topology::{Process, SimpleCommunicator};
40 use mpi::traits::Communicator;
41 use parking_lot::RwLock;
42
43 lazy_static! {
44 static ref USE_MPI: AtomicBool = AtomicBool::new(false);
45 }
46
47 static MPI_UNIVERSE: OnceLock<RwLock<Option<Universe>>> = OnceLock::new();
48
49 /// The default root rank for MPI processes
50 pub const ROOT_RANK: i32 = 0;
51
52 /// Check if the current MPI process is the root process
53 pub fn is_root() -> bool {
54 if let Some(world) = crate::mpi::get_world() {
55 world.rank() == ROOT_RANK
56 } else {
57 false
58 }
59 }
60
61 /// Shortcut method to just get the global MPI communicator without accessing `size` and `rank`
62 /// directly
63 pub fn get_world() -> Option<SimpleCommunicator> {
64 if let Some(universe_lock) = MPI_UNIVERSE.get() {
65 if let Some(universe) = &*universe_lock.read() {
66 let world = universe.world();
67 if world.size() == 1 {
68 return None;
69 }
70 return Some(world);
71 }
72 }
73 None
74 }
75
76 /// Get the rank of the current process
77 pub fn get_rank() -> Option<i32> {
78 get_world().map(|w| w.rank())
79 }
80
81 /// Get number of available processes/ranks
82 pub fn get_size() -> Option<i32> {
83 get_world().map(|w| w.size())
84 }
85
86 /// Use the MPI backend
87 ///
88 /// # Notes
89 ///
90 /// You must have MPI installed for this to work, and you must call the program with
91 /// `mpirun <executable>`, or bad things will happen.
92 ///
93 /// MPI runs an identical program on each process, but gives the program an ID called its
94 /// "rank". Only the results of methods on the root process (rank 0) should be
95 /// considered valid, as other processes only contain portions of each dataset. To ensure
96 /// you don't save or print data at other ranks, use the provided [`is_root()`]
97 /// method to check if the process is the root process.
98 ///
99 /// Once MPI is enabled, it cannot be disabled. If MPI could be toggled (which it can't),
100 /// the other processes will still run, but they will be independent of the root process
101 /// and will no longer communicate with it. The root process stores no data, so it would
102 /// be difficult (and convoluted) to get the results which were already processed via
103 /// MPI.
104 ///
105 /// Additionally, MPI must be enabled at the beginning of a script, at least before any
106 /// other `laddu` functions are called.
107 ///
108 /// If [`use_mpi()`] is called multiple times, the subsequent calls will have no
109 /// effect.
110 ///
111 /// <div class="warning">
112 ///
113 /// You **must** call [`finalize_mpi()`] before your program exits for MPI to terminate
114 /// smoothly.
115 ///
116 /// </div>
117 ///
118 /// # Examples
119 ///
120 /// ```ignore
121 /// fn main() {
122 /// laddu_core::use_mpi();
123 ///
124 /// // ... your code here ...
125 ///
126 /// laddu_core::finalize_mpi();
127 /// }
128 ///
129 /// ```
130 pub fn use_mpi(trigger: bool) {
131 if trigger {
132 USE_MPI.store(true, Ordering::SeqCst);
133 MPI_UNIVERSE.get_or_init(|| {
134 #[cfg(feature = "rayon")]
135 let threading = mpi::Threading::Funneled;
136 #[cfg(not(feature = "rayon"))]
137 let threading = mpi::Threading::Single;
138 let (universe, _threading) = mpi::initialize_with_threading(threading).unwrap();
139 let world = universe.world();
140 if world.size() == 1 {
141 eprintln!("Warning: MPI is enabled, but only one process is available. MPI will not be used, but single-CPU parallelism may still be used if enabled.");
142 finalize_mpi();
143 USE_MPI.store(false, Ordering::SeqCst);
144 RwLock::new(None)
145 } else {
146 RwLock::new(Some(universe))
147 }
148 });
149 }
150 }
151
152 /// Drop the MPI universe and finalize MPI at the end of a program
153 ///
154 /// This function will do nothing if MPI is not initialized.
155 ///
156 /// <div class="warning">
157 ///
158 /// This should only be called once and should be called at the end of all `laddu`-related
159 /// function calls. This must be called at the end of any program which uses MPI.
160 ///
161 /// </div>
162 pub fn finalize_mpi() {
163 if using_mpi() {
164 let mut universe = MPI_UNIVERSE.get().unwrap().write();
165 *universe = None;
166 }
167 }
168
169 /// Check if MPI backend is enabled
170 pub fn using_mpi() -> bool {
171 USE_MPI.load(Ordering::SeqCst)
172 }
173
174 /// A trait including some useful auxiliary methods for MPI
175 pub trait LadduMPI {
176 /// Get the process at the root rank
177 fn process_at_root(&self) -> Process<'_>;
178 /// Check if the current rank is the root rank
179 fn is_root(&self) -> bool;
180 /// Get the counts/displacements for partitioning a buffer of length
181 /// `buf_len`
182 fn get_counts_displs(&self, buf_len: usize) -> (Vec<i32>, Vec<i32>);
183 /// Get the counts/displacements for partitioning a nested buffer (like
184 /// a [`Vec<Vec<T>>`]). If the internal vectors all have the same length
185 /// `internal_len` and there are `unflattened_len` elements in the
186 /// outer vector, then this will give the correct counts/displacements for a
187 /// flattened version of the nested buffer.
188 fn get_flattened_counts_displs(
189 &self,
190 unflattened_len: usize,
191 internal_len: usize,
192 ) -> (Vec<i32>, Vec<i32>);
193 }
194
195 impl LadduMPI for SimpleCommunicator {
196 fn process_at_root(&self) -> Process<'_> {
197 self.process_at_rank(crate::mpi::ROOT_RANK)
198 }
199
200 fn is_root(&self) -> bool {
201 self.rank() == crate::mpi::ROOT_RANK
202 }
203
204 fn get_counts_displs(&self, buf_len: usize) -> (Vec<i32>, Vec<i32>) {
205 let mut counts = vec![0; self.size() as usize];
206 let mut displs = vec![0; self.size() as usize];
207 let chunk_size = buf_len / self.size() as usize;
208 let surplus = buf_len % self.size() as usize;
209 for i in 0..self.size() as usize {
210 counts[i] = if i < surplus {
211 chunk_size + 1
212 } else {
213 chunk_size
214 } as i32;
215 displs[i] = if i == 0 {
216 0
217 } else {
218 displs[i - 1] + counts[i - 1]
219 };
220 }
221 (counts, displs)
222 }
223
224 fn get_flattened_counts_displs(
225 &self,
226 unflattened_len: usize,
227 internal_len: usize,
228 ) -> (Vec<i32>, Vec<i32>) {
229 let mut counts = vec![0; self.size() as usize];
230 let mut displs = vec![0; self.size() as usize];
231 let chunk_size = unflattened_len / self.size() as usize;
232 let surplus = unflattened_len % self.size() as usize;
233 for i in 0..self.size() as usize {
234 counts[i] = if i < surplus {
235 (chunk_size + 1) * internal_len
236 } else {
237 chunk_size * internal_len
238 } as i32;
239 displs[i] = if i == 0 {
240 0
241 } else {
242 displs[i - 1] + counts[i - 1]
243 };
244 }
245 (counts, displs)
246 }
247 }
248}
249
250use thiserror::Error;
251
252/// [`Amplitude`](crate::amplitudes::Amplitude)s and methods for making and evaluating them.
253pub mod amplitudes;
254/// Methods for loading and manipulating [`Event`]-based data.
255pub mod data;
256/// Structures for manipulating the cache and free parameters.
257pub mod resources;
258/// Utility functions, enums, and traits
259pub mod utils;
260/// Useful traits for all crate structs
261pub mod traits {
262 pub use crate::amplitudes::Amplitude;
263 pub use crate::utils::variables::Variable;
264 pub use crate::ReadWrite;
265}
266
267pub use crate::data::{open, BinnedDataset, Dataset, Event};
268pub use crate::resources::{
269 Cache, ComplexMatrixID, ComplexScalarID, ComplexVectorID, MatrixID, ParameterID, Parameters,
270 Resources, ScalarID, VectorID,
271};
272pub use crate::utils::enums::{Channel, Frame, Sign};
273pub use crate::utils::variables::{
274 Angles, CosTheta, Mandelstam, Mass, Phi, PolAngle, PolMagnitude, Polarization,
275};
276pub use crate::utils::vectors::{Vec3, Vec4};
277pub use amplitudes::{
278 constant, parameter, AmplitudeID, Evaluator, Expression, Manager, Model, ParameterLike,
279};
280
281// Re-exports
282pub use ganesh::{mcmc::Ensemble, Bound, Status};
283pub use nalgebra::DVector;
284pub use num::Complex;
285
286/// A floating-point number type (defaults to [`f64`], see `f32` feature).
287#[cfg(not(feature = "f32"))]
288pub type Float = f64;
289
290/// A floating-point number type (defaults to [`f64`], see `f32` feature).
291#[cfg(feature = "f32")]
292pub type Float = f32;
293
294/// The mathematical constant $`\pi`$.
295#[cfg(not(feature = "f32"))]
296pub const PI: Float = std::f64::consts::PI;
297
298/// The mathematical constant $`\pi`$.
299#[cfg(feature = "f32")]
300pub const PI: Float = std::f32::consts::PI;
301
302/// The error type used by all `laddu` internal methods
303#[derive(Error, Debug)]
304pub enum LadduError {
305 /// An alias for [`std::io::Error`].
306 #[error("IO Error: {0}")]
307 IOError(#[from] std::io::Error),
308 /// An alias for [`parquet::errors::ParquetError`].
309 #[error("Parquet Error: {0}")]
310 ParquetError(#[from] parquet::errors::ParquetError),
311 /// An alias for [`arrow::error::ArrowError`].
312 #[error("Arrow Error: {0}")]
313 ArrowError(#[from] arrow::error::ArrowError),
314 /// An alias for [`shellexpand::LookupError`].
315 #[error("Failed to expand path: {0}")]
316 LookupError(#[from] shellexpand::LookupError<std::env::VarError>),
317 /// An error which occurs when the user tries to register two amplitudes by the same name to
318 /// the same [`Manager`].
319 #[error("An amplitude by the name \"{name}\" is already registered by this manager!")]
320 RegistrationError {
321 /// Name of amplitude which is already registered
322 name: String,
323 },
324 /// An error which occurs when the user tries to use an unregistered amplitude.
325 #[error("No registered amplitude with name \"{name}\"!")]
326 AmplitudeNotFoundError {
327 /// Name of amplitude which failed lookup
328 name: String,
329 },
330 /// An error which occurs when the user tries to parse an invalid string of text, typically
331 /// into an enum variant.
332 #[error("Failed to parse string: \"{name}\" does not correspond to a valid \"{object}\"!")]
333 ParseError {
334 /// The string which was parsed
335 name: String,
336 /// The name of the object it failed to parse into
337 object: String,
338 },
339 /// An error returned by the Rust de(serializer)
340 #[error("(De)Serialization error: {0}")]
341 SerdeError(#[from] Box<ErrorKind>),
342 /// An error returned by the Python pickle (de)serializer
343 #[error("Pickle conversion error: {0}")]
344 PickleError(#[from] serde_pickle::Error),
345 /// An error type for [`rayon`] thread pools
346 #[cfg(feature = "rayon")]
347 #[error("Error building thread pool: {0}")]
348 ThreadPoolError(#[from] rayon::ThreadPoolBuildError),
349 /// An error type for [`numpy`]-related conversions
350 #[cfg(feature = "numpy")]
351 #[error("Numpy error: {0}")]
352 NumpyError(#[from] numpy::FromVecError),
353 /// A custom fallback error for errors too complex or too infrequent to warrant their own error
354 /// category.
355 #[error("{0}")]
356 Custom(String),
357}
358
359impl Clone for LadduError {
360 // This is a little hack because error types are rarely cloneable, but I need to store them in a
361 // cloneable box for minimizers and MCMC methods
362 fn clone(&self) -> Self {
363 let err_string = self.to_string();
364 LadduError::Custom(err_string)
365 }
366}
367
368#[cfg(feature = "python")]
369impl From<LadduError> for PyErr {
370 fn from(err: LadduError) -> Self {
371 use pyo3::exceptions::*;
372 let err_string = err.to_string();
373 match err {
374 LadduError::LookupError(_)
375 | LadduError::RegistrationError { .. }
376 | LadduError::AmplitudeNotFoundError { .. }
377 | LadduError::ParseError { .. } => PyValueError::new_err(err_string),
378 LadduError::ParquetError(_)
379 | LadduError::ArrowError(_)
380 | LadduError::IOError(_)
381 | LadduError::SerdeError(_)
382 | LadduError::PickleError(_) => PyIOError::new_err(err_string),
383 LadduError::Custom(_) => PyException::new_err(err_string),
384 #[cfg(feature = "rayon")]
385 LadduError::ThreadPoolError(_) => PyException::new_err(err_string),
386 #[cfg(feature = "numpy")]
387 LadduError::NumpyError(_) => PyException::new_err(err_string),
388 }
389 }
390}
391
392use serde::{de::DeserializeOwned, Serialize};
393use std::{
394 fmt::Debug,
395 fs::File,
396 io::{BufReader, BufWriter},
397 path::Path,
398};
399/// A trait which allows structs with [`Serialize`] and [`Deserialize`](`serde::Deserialize`) to be
400/// written and read from files with a certain set of types/extensions.
401///
402/// Currently, Python's pickle format is supported supported, since it's an easy-to-parse standard
403/// that supports floating point values better that JSON or TOML
404pub trait ReadWrite: Serialize + DeserializeOwned {
405 /// Create a null version of the object which acts as a shell into which Python's `pickle` module
406 /// can load data. This generally shouldn't be used to construct the struct in regular code.
407 fn create_null() -> Self;
408 /// Save a [`serde`]-object to a file path, using the extension to determine the file format
409 fn save_as<T: AsRef<str>>(&self, file_path: T) -> Result<(), LadduError> {
410 let expanded_path = shellexpand::full(file_path.as_ref())?;
411 let file_path = Path::new(expanded_path.as_ref());
412 let file = File::create(file_path)?;
413 let mut writer = BufWriter::new(file);
414 serde_pickle::to_writer(&mut writer, self, Default::default())?;
415 Ok(())
416 }
417 /// Load a [`serde`]-object from a file path, using the extension to determine the file format
418 fn load_from<T: AsRef<str>>(file_path: T) -> Result<Self, LadduError> {
419 let file_path = Path::new(&*shellexpand::full(file_path.as_ref())?).canonicalize()?;
420 let file = File::open(file_path)?;
421 let reader = BufReader::new(file);
422 serde_pickle::from_reader(reader, Default::default()).map_err(LadduError::from)
423 }
424}
425
426impl ReadWrite for Status {
427 fn create_null() -> Self {
428 Status::default()
429 }
430}
431impl ReadWrite for Ensemble {
432 fn create_null() -> Self {
433 Ensemble::new(Vec::default())
434 }
435}
436impl ReadWrite for Model {
437 fn create_null() -> Self {
438 Model {
439 manager: Manager::default(),
440 expression: Expression::default(),
441 }
442 }
443}