Expand description
Standard special functions like spherical harmonics and momentum definitions.
Functionsยง
- blatt_
weisskopf - Computes the Blatt-Weisskopf centrifugal barrier factor for a particle with mass $
m_0$ and angular momentum $\ell$ decaying to two particles with masses $m_1$ and $m_2$. - breakup_
momentum - Computes the breakup momentum (often denoted $
q$) for a particle with mass $m_0$ decaying into two particles with masses $m_1$ and $m_2$: $\frac{m_0 \left|\rho(m_0^2, m_1, m_2)\right|}{2}$. - chi_
minus - Computes $
\chi_-(s, m_1, m_2) = 1 - \frac{(m_1 - m_2)^2}{s}$. - chi_
plus - Computes $
\chi_+(s, m_1, m_2) = 1 - \frac{(m_1 + m_2)^2}{s}$. - complex_
blatt_ weisskopf - Computes the Blatt-Weisskopf centrifugal barrier factor for a particle with mass $
m_0$ and angular momentum $\ell$ decaying to two particles with masses $m_1$ and $m_2$. - complex_
breakup_ momentum - Computes the breakup momentum (often denoted $
q$) for a particle with mass $m_0$ decaying into two particles with masses $m_1$ and $m_2$: $\frac{m_0 \rho(m_0^2, m_1, m_2)}{2}$. - rho
- Computes the phase-space factor $
\rho(s, m_1, m_2) = \sqrt(\chi_+(s, m_1, m_2)\chi_-(s, m_1, m_2))$ - spherical_
harmonic - Computes the spherical harmonic $
Y_{\ell}^m(\theta, \phi)$ (given $\cos\theta$). Note that this formulation includes the Condon-Shortley phase.