laddu_amplitudes/zlm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
use serde::{Deserialize, Serialize};
use laddu_core::{
amplitudes::{Amplitude, AmplitudeID},
data::Event,
resources::{Cache, ComplexScalarID, Parameters, Resources},
utils::{
functions::spherical_harmonic,
variables::{Angles, Variable},
},
Complex, DVector, Float, LadduError, Polarization, Sign,
};
#[cfg(feature = "python")]
use laddu_python::{
amplitudes::PyAmplitude,
utils::variables::{PyAngles, PyPolarization},
};
#[cfg(feature = "python")]
use pyo3::prelude::*;
/// An [`Amplitude`] representing an extension of the [`Ylm`](crate::amplitudes::ylm::Ylm)
/// [`Amplitude`] assuming a linearly polarized beam as described in Equation (D13)
/// [here](https://arxiv.org/abs/1906.04841)[^1]
///
/// [^1]: Mathieu, V., Albaladejo, M., Fernández-Ramírez, C., Jackura, A. W., Mikhasenko, M., Pilloni, A., & Szczepaniak, A. P. (2019). Moments of angular distribution and beam asymmetries in $`\eta\pi^0`$ photoproduction at GlueX. _Physical Review D_, **100**(5). [doi:10.1103/physrevd.100.054017](https://doi.org/10.1103/PhysRevD.100.054017)
#[derive(Clone, Serialize, Deserialize)]
pub struct Zlm {
name: String,
l: usize,
m: isize,
r: Sign,
angles: Angles,
polarization: Polarization,
csid: ComplexScalarID,
}
impl Zlm {
/// Construct a new [`Zlm`] with the given name, angular momentum (`l`), moment (`m`), and
/// reflectivity (`r`) over the given set of [`Angles`] and [`Polarization`] [`Variable`]s.
pub fn new(
name: &str,
l: usize,
m: isize,
r: Sign,
angles: &Angles,
polarization: &Polarization,
) -> Box<Self> {
Self {
name: name.to_string(),
l,
m,
r,
angles: angles.clone(),
polarization: polarization.clone(),
csid: ComplexScalarID::default(),
}
.into()
}
}
#[typetag::serde]
impl Amplitude for Zlm {
fn register(&mut self, resources: &mut Resources) -> Result<AmplitudeID, LadduError> {
self.csid = resources.register_complex_scalar(None);
resources.register_amplitude(&self.name)
}
fn precompute(&self, event: &Event, cache: &mut Cache) {
let ylm = spherical_harmonic(
self.l,
self.m,
self.angles.costheta.value(event),
self.angles.phi.value(event),
);
let pol_angle = self.polarization.pol_angle.value(event);
let pgamma = self.polarization.pol_magnitude.value(event);
let phase = Complex::new(Float::cos(-pol_angle), Float::sin(-pol_angle));
let zlm = ylm * phase;
cache.store_complex_scalar(
self.csid,
match self.r {
Sign::Positive => Complex::new(
Float::sqrt(1.0 + pgamma) * zlm.re,
Float::sqrt(1.0 - pgamma) * zlm.im,
),
Sign::Negative => Complex::new(
Float::sqrt(1.0 - pgamma) * zlm.re,
Float::sqrt(1.0 + pgamma) * zlm.im,
),
},
);
}
fn compute(&self, _parameters: &Parameters, _event: &Event, cache: &Cache) -> Complex<Float> {
cache.get_complex_scalar(self.csid)
}
fn compute_gradient(
&self,
_parameters: &Parameters,
_event: &Event,
_cache: &Cache,
_gradient: &mut DVector<Complex<Float>>,
) {
// This amplitude is independent of free parameters
}
}
/// An spherical harmonic Amplitude for polarized beam experiments
///
/// Computes a polarized spherical harmonic (:math:`Z_{\ell}^{(r)m}(\theta, \varphi; P_\gamma, \Phi)`) with additional
/// polarization-related factors (see notes)
///
/// Parameters
/// ----------
/// name : str
/// The Amplitude name
/// l : int
/// The total orbital momentum (:math:`l \geq 0`)
/// m : int
/// The orbital moment (:math:`-l \leq m \leq l`)
/// r : {'+', 'plus', 'pos', 'positive', '-', 'minus', 'neg', 'negative'}
/// The reflectivity (related to naturality of parity exchange)
/// angles : laddu.Angles
/// The spherical angles to use in the calculation
/// polarization : laddu.Polarization
/// The beam polarization to use in the calculation
///
/// Returns
/// -------
/// laddu.Amplitude
/// An Amplitude which can be registered by a laddu.Manager
///
/// Raises
/// ------
/// ValueError
/// If `r` is not one of the valid options
///
/// See Also
/// --------
/// laddu.Manager
///
/// Notes
/// -----
/// This amplitude is described in [Mathieu]_
///
/// .. [Mathieu] Mathieu, V., Albaladejo, M., Fernández-Ramírez, C., Jackura, A. W., Mikhasenko, M., Pilloni, A., & Szczepaniak, A. P. (2019). Moments of angular distribution and beam asymmetries in :math:`\eta\pi^0` photoproduction at GlueX. Physical Review D, 100(5). `doi:10.1103/physrevd.100.054017 <https://doi.org/10.1103/PhysRevD.100.054017>`_
///
#[cfg(feature = "python")]
#[pyfunction(name = "Zlm")]
pub fn py_zlm(
name: &str,
l: usize,
m: isize,
r: &str,
angles: &PyAngles,
polarization: &PyPolarization,
) -> PyResult<PyAmplitude> {
Ok(PyAmplitude(Zlm::new(
name,
l,
m,
r.parse()?,
&angles.0,
&polarization.0,
)))
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use super::*;
use approx::assert_relative_eq;
use laddu_core::{data::test_dataset, Frame, Manager};
#[test]
fn test_zlm_evaluation() {
let mut manager = Manager::default();
let angles = Angles::new(0, [1], [2], [2, 3], Frame::Helicity);
let polarization = Polarization::new(0, [1]);
let amp = Zlm::new("zlm", 1, 1, Sign::Positive, &angles, &polarization);
let aid = manager.register(amp).unwrap();
let dataset = Arc::new(test_dataset());
let expr = aid.into();
let model = manager.model(&expr);
let evaluator = model.load(&dataset);
let result = evaluator.evaluate(&[]);
assert_relative_eq!(result[0].re, 0.04284127, epsilon = Float::EPSILON.sqrt());
assert_relative_eq!(result[0].im, -0.23859638, epsilon = Float::EPSILON.sqrt());
}
#[test]
fn test_zlm_gradient() {
let mut manager = Manager::default();
let angles = Angles::new(0, [1], [2], [2, 3], Frame::Helicity);
let polarization = Polarization::new(0, [1]);
let amp = Zlm::new("zlm", 1, 1, Sign::Positive, &angles, &polarization);
let aid = manager.register(amp).unwrap();
let dataset = Arc::new(test_dataset());
let expr = aid.into();
let model = manager.model(&expr);
let evaluator = model.load(&dataset);
let result = evaluator.evaluate_gradient(&[]);
assert_eq!(result[0].len(), 0); // amplitude has no parameters
}
}