laddu_amplitudes/
breit_wigner.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use serde::{Deserialize, Serialize};

use laddu_core::{
    amplitudes::{Amplitude, AmplitudeID, ParameterLike},
    data::Event,
    resources::{Cache, ParameterID, Parameters, Resources},
    utils::{
        functions::{blatt_weisskopf, breakup_momentum},
        variables::{Mass, Variable},
    },
    Complex, DVector, Float, LadduError, PI,
};

#[cfg(feature = "python")]
use laddu_python::{
    amplitudes::{PyAmplitude, PyParameterLike},
    utils::variables::PyMass,
};
#[cfg(feature = "python")]
use pyo3::prelude::*;

/// A relativistic Breit-Wigner [`Amplitude`], parameterized as follows:
/// ```math
/// I_{\ell}(m; m_0, \Gamma_0, m_1, m_2) =  \frac{1}{\pi}\frac{m_0 \Gamma_0 B_{\ell}(m, m_1, m_2)}{(m_0^2 - m^2) - \imath m_0 \Gamma}
/// ```
/// where
/// ```math
/// \Gamma = \Gamma_0 \frac{m_0}{m} \frac{q(m, m_1, m_2)}{q(m_0, m_1, m_2)} \left(\frac{B_{\ell}(m, m_1, m_2)}{B_{\ell}(m_0, m_1, m_2)}\right)^2
/// ```
/// is the relativistic width correction, $`q(m_a, m_b, m_c)`$ is the breakup momentum of a particle with mass $`m_a`$ decaying into two particles with masses $`m_b`$ and $`m_c`$, $`B_{\ell}(m_a, m_b, m_c)`$ is the Blatt-Weisskopf barrier factor for the same decay assuming particle $`a`$ has angular momentum $`\ell`$, $`m_0`$ is the mass of the resonance, $`\Gamma_0`$ is the nominal width of the resonance, $`m_1`$ and $`m_2`$ are the masses of the decay products, and $`m`$ is the "input" mass.
#[derive(Clone, Serialize, Deserialize)]
pub struct BreitWigner {
    name: String,
    mass: ParameterLike,
    width: ParameterLike,
    pid_mass: ParameterID,
    pid_width: ParameterID,
    l: usize,
    daughter_1_mass: Mass,
    daughter_2_mass: Mass,
    resonance_mass: Mass,
}
impl BreitWigner {
    /// Construct a [`BreitWigner`] with the given name, mass, width, and angular momentum (`l`).
    /// This uses the given `resonance_mass` as the "input" mass and two daughter masses of the
    /// decay products to determine phase-space and Blatt-Weisskopf factors.
    pub fn new(
        name: &str,
        mass: ParameterLike,
        width: ParameterLike,
        l: usize,
        daughter_1_mass: &Mass,
        daughter_2_mass: &Mass,
        resonance_mass: &Mass,
    ) -> Box<Self> {
        Self {
            name: name.to_string(),
            mass,
            width,
            pid_mass: ParameterID::default(),
            pid_width: ParameterID::default(),
            l,
            daughter_1_mass: daughter_1_mass.clone(),
            daughter_2_mass: daughter_2_mass.clone(),
            resonance_mass: resonance_mass.clone(),
        }
        .into()
    }
}

#[typetag::serde]
impl Amplitude for BreitWigner {
    fn register(&mut self, resources: &mut Resources) -> Result<AmplitudeID, LadduError> {
        self.pid_mass = resources.register_parameter(&self.mass);
        self.pid_width = resources.register_parameter(&self.width);
        resources.register_amplitude(&self.name)
    }

    fn compute(&self, parameters: &Parameters, event: &Event, _cache: &Cache) -> Complex<Float> {
        let mass = self.resonance_mass.value(event);
        let mass0 = parameters.get(self.pid_mass).abs();
        let width0 = parameters.get(self.pid_width).abs();
        let mass1 = self.daughter_1_mass.value(event);
        let mass2 = self.daughter_2_mass.value(event);
        let q0 = breakup_momentum(mass0, mass1, mass2);
        let q = breakup_momentum(mass, mass1, mass2);
        let f0 = blatt_weisskopf(mass0, mass1, mass2, self.l);
        let f = blatt_weisskopf(mass, mass1, mass2, self.l);
        let width = width0 * (mass0 / mass) * (q / q0) * (f / f0).powi(2);
        let n = Float::sqrt(mass0 * width0 / PI);
        let d = Complex::new(mass0.powi(2) - mass.powi(2), -(mass0 * width));
        Complex::from(f * n) / d
    }

    fn compute_gradient(
        &self,
        parameters: &Parameters,
        event: &Event,
        cache: &Cache,
        gradient: &mut DVector<Complex<Float>>,
    ) {
        let mut indices = Vec::with_capacity(2);
        if let ParameterID::Parameter(index) = self.pid_mass {
            indices.push(index)
        }
        if let ParameterID::Parameter(index) = self.pid_width {
            indices.push(index)
        }
        self.central_difference_with_indices(&indices, parameters, event, cache, gradient)
    }
}

/// An relativistic Breit-Wigner Amplitude
///
/// This Amplitude represents a relativistic Breit-Wigner with known angular momentum
///
/// Parameters
/// ----------
/// name : str
///     The Amplitude name
/// mass : laddu.ParameterLike
///     The mass of the resonance
/// width : laddu.ParameterLike
///     The (nonrelativistic) width of the resonance
/// l : int
///     The total orbital momentum (:math:`l > 0`)
/// daughter_1_mass : laddu.Mass
///     The mass of the first decay product
/// daughter_2_mass : laddu.Mass
///     The mass of the second decay product
/// resonance_mass: laddu.Mass
///     The total mass of the resonance
///
/// Returns
/// -------
/// laddu.Amplitude
///     An Amplitude which can be registered by a laddu.Manager
///
/// See Also
/// --------
/// laddu.Manager
///
#[cfg(feature = "python")]
#[pyfunction(name = "BreitWigner")]
pub fn py_breit_wigner(
    name: &str,
    mass: PyParameterLike,
    width: PyParameterLike,
    l: usize,
    daughter_1_mass: &PyMass,
    daughter_2_mass: &PyMass,
    resonance_mass: &PyMass,
) -> PyAmplitude {
    PyAmplitude(BreitWigner::new(
        name,
        mass.0,
        width.0,
        l,
        &daughter_1_mass.0,
        &daughter_2_mass.0,
        &resonance_mass.0,
    ))
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use super::*;
    use approx::assert_relative_eq;
    use laddu_core::{data::test_dataset, parameter, Manager, Mass};

    #[test]
    fn test_bw_evaluation() {
        let mut manager = Manager::default();
        let amp = BreitWigner::new(
            "bw",
            parameter("mass"),
            parameter("width"),
            2,
            &Mass::new([2]),
            &Mass::new([3]),
            &Mass::new([2, 3]),
        );
        let aid = manager.register(amp).unwrap();

        let dataset = Arc::new(test_dataset());
        let expr = aid.into();
        let model = manager.model(&expr);
        let evaluator = model.load(&dataset);

        let result = evaluator.evaluate(&[1.5, 0.3]);

        assert_relative_eq!(result[0].re, 1.45856917, epsilon = Float::EPSILON.sqrt());
        assert_relative_eq!(result[0].im, 1.4107341, epsilon = Float::EPSILON.sqrt());
    }

    #[test]
    fn test_bw_gradient() {
        let mut manager = Manager::default();
        let amp = BreitWigner::new(
            "bw",
            parameter("mass"),
            parameter("width"),
            2,
            &Mass::new([2]),
            &Mass::new([3]),
            &Mass::new([2, 3]),
        );
        let aid = manager.register(amp).unwrap();

        let dataset = Arc::new(test_dataset());
        let expr = aid.into();
        let model = manager.model(&expr);
        let evaluator = model.load(&dataset);
        dbg!(Mass::new([2, 3]).value_on(&dataset));

        let result = evaluator.evaluate_gradient(&[1.7, 0.3]);
        assert_relative_eq!(result[0][0].re, -2.410585, epsilon = Float::EPSILON.cbrt());
        assert_relative_eq!(result[0][0].im, -1.8880913, epsilon = Float::EPSILON.cbrt());
        assert_relative_eq!(result[0][1].re, 1.0467031, epsilon = Float::EPSILON.cbrt());
        assert_relative_eq!(result[0][1].im, 1.3683612, epsilon = Float::EPSILON.cbrt());
    }
}