Expand description
Β§la-stack
Fast, stack-allocated linear algebra for fixed dimensions in Rust.
This crate grew from the need to support delaunay with fast, stack-allocated linear algebra primitives and algorithms
while keeping the API intentionally small and explicit.
Β§π Introduction
la-stack provides a handful of const-generic, stack-backed building blocks:
Vector<const D: usize>for fixed-length vectors ([f64; D]today)Matrix<const D: usize>for fixed-size square matrices ([[f64; D]; D]today)Lu<const D: usize>for LU factorization with partial pivoting (solve + det)
Β§β¨ Design goals
- β
Copytypes where possible - β Const-generic dimensions (no dynamic sizes)
- β Explicit algorithms (LU, solve, determinant)
- β No runtime dependencies (dev-dependencies are for contributors only)
- β Stack storage only (no heap allocation in core types)
- β
unsafeforbidden
Β§π« Anti-goals
- Bare-metal performance: see
blas-src,lapack-src,openblas-src - Comprehensive: use
nalgebraif you need a full-featured library - Large matrices/dimensions with parallelism: use
faerif you need this
Β§π’ Scalar types
Today, the core types are implemented for f64. The intent is to support f32 and f64
(and f128 if/when Rust gains a stable primitive for it). Longer term, we may add optional
arbitrary-precision support (e.g. via rug) depending on performance.
Β§π Quickstart
Add this to your Cargo.toml:
[dependencies]
la-stack = "0.1"Solve a 5Γ5 system via LU:
use la_stack::prelude::*;
// This system requires pivoting (a[0][0] = 0), so it's a good LU demo.
// A = J - I: zeros on diagonal, ones elsewhere.
let a = Matrix::<5>::from_rows([
[0.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 0.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 0.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 0.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 0.0],
]);
let b = Vector::<5>::new([14.0, 13.0, 12.0, 11.0, 10.0]);
let lu = a.lu(DEFAULT_PIVOT_TOL).unwrap();
let x = lu.solve_vec(b).unwrap().into_array();
// Floating-point rounding is expected; compare with a tolerance.
let expected = [1.0, 2.0, 3.0, 4.0, 5.0];
for (x_i, e_i) in x.iter().zip(expected.iter()) {
assert!((*x_i - *e_i).abs() <= 1e-12);
}Β§π§© API at a glance
| Type | Storage | Purpose | Key methods |
|---|---|---|---|
Vector<D> | [f64; D] | Fixed-length vector | new, zero, dot, norm2_sq |
Matrix<D> | [[f64; D]; D] | Fixed-size square matrix | from_rows, zero, identity, lu, det |
Lu<D> | Matrix<D> + pivot array | Factorization for solves/det | solve_vec, det |
Storage shown above reflects the current f64 implementation.
Β§π Examples
The examples/ directory contains small, runnable programs:
just examples
# or:
cargo run --example solve_5x5
cargo run --example det_5x5Β§π€ Contributing
A short contributor workflow:
cargo install just
just ci # lint + fast tests + bench compile
just commit-check # lint + all tests + examplesFor the full set of developer commands, see just --list and WARP.md.
Β§π Benchmarks (vs nalgebra/faer)
Raw data: docs/assets/bench/vs_linalg_lu_solve_median.csv
Summary (median time; lower is better). The βla-stack vs nalgebra/faerβ columns show the % time reduction relative to each baseline (positive = la-stack faster):
| D | la-stack median (ns) | nalgebra median (ns) | faer median (ns) | la-stack vs nalgebra | la-stack vs faer |
|---|---|---|---|---|---|
| 2 | 2.043 | 18.278 | 159.281 | +88.8% | +98.7% |
| 3 | 13.449 | 23.337 | 196.591 | +42.4% | +93.2% |
| 4 | 27.807 | 54.199 | 226.222 | +48.7% | +87.7% |
| 5 | 46.075 | 73.548 | 290.914 | +37.4% | +84.2% |
| 8 | 138.187 | 177.453 | 379.886 | +22.1% | +63.6% |
| 16 | 626.078 | 594.055 | 897.044 | -5.4% | +30.2% |
| 32 | 2,684.696 | 2,502.031 | 2,909.466 | -7.3% | +7.7% |
| 64 | 16,721.576 | 14,875.770 | 12,493.628 | -12.4% | -33.8% |
Β§π License
BSD 3-Clause License. See LICENSE.
ModulesΒ§
- prelude
- Common imports for ergonomic usage.
StructsΒ§
- Lu
- LU decomposition (PA = LU) with partial pivoting.
- Matrix
- Fixed-size square matrix
DΓD, stored inline. - Vector
- Fixed-size vector of length
D, stored inline.
EnumsΒ§
- LaError
- Linear algebra errors.
ConstantsΒ§
- DEFAULT_
PIVOT_ TOL - Default absolute pivot tolerance used for singularity detection.