1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
use ark_bls12_381::{Bls12_381, Config, Fr as F, G1Affine, G1Projective, G2Affine, G2Projective};
use ark_ec::{
    bls12::{G1Prepared, G2Prepared},
    pairing::Pairing,
    short_weierstrass::Affine,
    AffineRepr, CurveGroup,
};
use ark_ff::{Field, UniformRand, Zero};
use ark_poly::{
    polynomial,
    univariate::{DenseOrSparsePolynomial, DensePolynomial},
    DenseUVPolynomial, Polynomial,
};
use ark_std::{rand, One};

use derive_more::Display;

#[derive(Debug, Display)]
pub enum ProofError {
    #[display(fmt = "Cannot generate valid proof: division remainder is non-zero")]
    InvalidProof,
    #[display(fmt = "Polynomial division failed")]
    DivisionError,
}
impl std::error::Error for ProofError {}

struct KZGCommitment {
    trusted_setup_g1: Vec<G1Affine>,
    trusted_setup_g2: Vec<G2Affine>,
}

impl KZGCommitment {
    pub fn new(degree: usize) -> Self {
        let (trusted_setup_g1, trusted_setup_g2) = Self::trusted_setup(degree);
        Self {
            trusted_setup_g1,
            trusted_setup_g2,
        }
    }

    fn lagrange_interpolation(points: &Vec<(F, F)>) -> DensePolynomial<F> {
        let mut result: DensePolynomial<F> = DensePolynomial::zero();
        for (index, &(x_i, y_i)) in points.into_iter().enumerate() {
            let mut term = DensePolynomial::from_coefficients_vec(vec![y_i]);
            for (j, &(x_j, _)) in points.iter().enumerate() {
                if j != index {
                    let scalar = (x_i - x_j).inverse().unwrap();
                    let numerator = DensePolynomial::from_coefficients_vec(vec![
                        -x_j * scalar,
                        F::one() * scalar,
                    ]);
                    term = &term * &numerator;
                }
            }

            result += &term;
        }
        result
    }

    fn trusted_setup(degree: usize) -> (Vec<G1Affine>, Vec<G2Affine>) {
        let mut rng = ark_std::test_rng();
        let tau = F::rand(&mut rng);
        let mut trusted_setup_g1: Vec<G1Affine> = Vec::new();
        let mut trusted_setup_g2: Vec<G2Affine> = Vec::new();
        for i in 0..degree {
            let tau_i = tau.pow([i as u64]);
            trusted_setup_g1.push((G1Affine::generator() * tau_i).into_affine());
            trusted_setup_g2.push((G2Affine::generator() * tau_i).into_affine());
        }

        (trusted_setup_g1, trusted_setup_g2)
    }

    pub fn vector_to_polynomial(vector: &Vec<i32>) -> DensePolynomial<F> {
        let y_s: Vec<F> = vector.iter().map(|&y| F::from(y)).collect();
        let x_s: Vec<F> = (0..vector.len()).map(|val| F::from(val as u32)).collect();
        let points: Vec<(F, F)> = x_s.into_iter().zip(y_s.into_iter()).collect();
        Self::lagrange_interpolation(&points)
    }

    fn evaluate_polynomial_at_g1_setup(&self, polynomial: &DensePolynomial<F>) -> G1Affine {
        let mut result: G1Affine = G1Affine::zero();
        let poly_coeffs = polynomial.coeffs();
        for (index, coeff) in poly_coeffs.into_iter().enumerate() {
            let temp = (self.trusted_setup_g1[index] * coeff).into_affine();
            result = (result + temp).into_affine();
        }
        result
    }

    fn evaluate_polynomial_at_g2_setup(&self, polynomial: &DensePolynomial<F>) -> G2Affine {
        let mut result: G2Affine = G2Affine::zero();
        let poly_coeffs = polynomial.coeffs();
        for (index, coeff) in poly_coeffs.into_iter().enumerate() {
            let temp = (self.trusted_setup_g2[index] * coeff).into_affine();
            result = (result + temp).into_affine();
        }
        result
    }

    pub fn commit_polynomial(&self, polynomial: &DensePolynomial<F>) -> G1Affine {
        self.evaluate_polynomial_at_g1_setup(polynomial)
    }

    pub fn generate_proof(
        &self,
        polynomial: &DensePolynomial<F>,
        points: &Vec<(i32, i32)>,
    ) -> Result<G1Affine, ProofError> {
        // lagrange interpolation
        let points_ff: Vec<(F, F)> = points.into_iter().map(|&(x, y)| (F::from(x), F::from(y))).collect();
        let point_polynomial = Self::lagrange_interpolation(&points_ff);
        let numerator = polynomial - &point_polynomial;
        let mut denominator = DensePolynomial::from_coefficients_vec(vec![F::from(1)]);
        for (x, _) in points_ff {
            denominator =
                &denominator * &DensePolynomial::from_coefficients_vec(vec![-x, F::from(1)]);
        }
        let (q, r) = DenseOrSparsePolynomial::from(numerator)
            .divide_with_q_and_r(&DenseOrSparsePolynomial::from(denominator))
            .unwrap();

        if r != DensePolynomial::zero() {
            return Err(ProofError::InvalidProof);
        }

        Ok(self.evaluate_polynomial_at_g1_setup(&q))
    }

    pub fn verify_proof(
        &self,
        commitment: &G1Affine,
        points: &Vec<(i32, i32)>,
        proof: &G1Affine,
    ) -> bool {
        let points_ff: Vec<(F, F)> = points.into_iter().map(|&(x, y)| (F::from(x), F::from(y))).collect();
        let point_polynomial = Self::lagrange_interpolation(&points_ff);
        let mut vanishing_polynomial = DensePolynomial::from_coefficients_vec(vec![F::from(1)]);
        for (x, _) in points_ff {
            vanishing_polynomial = &vanishing_polynomial
                * &DensePolynomial::from_coefficients_vec(vec![-x, F::from(1)]);
        }

        let z_s: G2Affine = self.evaluate_polynomial_at_g2_setup(&vanishing_polynomial);
        let i_s: G1Affine = self.evaluate_polynomial_at_g1_setup(&point_polynomial);

        let lhs = Bls12_381::pairing(proof, z_s);
        let g1_lhs = *commitment - i_s;
        let rhs = Bls12_381::pairing(g1_lhs.into_affine(), G2Affine::generator());

        lhs == rhs
    }
}

#[cfg(test)]
mod tests {
    use std::vec;

    use crate::ProofError;

    use super::KZGCommitment;
    use ark_bls12_381::{Fr as F, G1Affine, G2Affine};
    use ark_ec::{AffineRepr, CurveGroup};
    use ark_poly::{polynomial, Polynomial};
    use rand::{prelude::SliceRandom, Rng};

    #[test]
    fn test_vec_to_poly() {
        let vector = generate_random_vec();
        let polynomial = KZGCommitment::vector_to_polynomial(&vector);
        let random_points = random_points(&vector);
        for (x, y) in random_points {
            assert_eq!(
                polynomial.evaluate(&F::from(x)),
                F::from(y),
                "Vector interpolation is wrong"
            );
        }
    }

    #[test]
    fn test_verify_proof_valid() {
        let kzg = KZGCommitment::new(50);
        let vector = generate_random_vec();
        let polynomial = KZGCommitment::vector_to_polynomial(&vector);
        let random_points = random_points(&vector);
        let commitment = kzg.commit_polynomial(&polynomial);
        let proof = kzg.generate_proof(&polynomial, &random_points).unwrap();
        let verification = kzg.verify_proof(&commitment, &random_points, &proof);

        assert!(verification, "Verification is false");
    }

    #[test]
    fn test_invalid_proof_generation() {
        let kzg = KZGCommitment::new(50);
        let vector = generate_random_vec();
        let polynomial = KZGCommitment::vector_to_polynomial(&vector);

        let invalid_vector = generate_random_vec();
        let invalid_points = random_points(&invalid_vector);

        let proof_result = kzg.generate_proof(&polynomial, &invalid_points);
        match proof_result {
          Ok(_) => panic!("Expected an error, but proof generation succeeded"),
          Err(ProofError::InvalidProof) => {
              // Test passes if we get the InvalidProof error
          },
          Err(e) => panic!("Expected InvalidProof error, but got: {:?}", e),
      }
    }

    #[test]
    fn test_invalid_proof_verification() {
        let kzg = KZGCommitment::new(50);
        let vector = generate_random_vec();
        let polynomial = KZGCommitment::vector_to_polynomial(&vector);
        let commitment = kzg.commit_polynomial(&polynomial);

        let invalid_vector = generate_random_vec();
        let invalid_points = random_points(&invalid_vector);
        let invalid_proof = (G1Affine::generator() * F::from(10)).into_affine();

        let verification = kzg.verify_proof(&commitment, &invalid_points, &invalid_proof);

        assert!(!verification, "The verification should be false");
    }

    fn generate_random_vec() -> Vec<i32> {
        let mut rng = rand::thread_rng();
        let length = rng.gen_range(1..=50);
        println!("Generating vector with length: {}", length);
        (0..length).map(|_| rng.gen_range(-1000..=1000)).collect()
    }

    fn random_points(vec: &Vec<i32>) -> Vec<(i32, i32)> {
        let mut rng = rand::thread_rng();
        let count = rng.gen_range(1..vec.len());
        println!("Fetching {} points", count);
        vec.iter()
            .enumerate()
            .collect::<Vec<(usize, &i32)>>()
            .choose_multiple(&mut rng, count)
            .map(|&(index, item)| (index as i32, item.clone()))
            .collect()
    }
}