1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//! # Kyber-Rust
//!
//! A Rust wrapper for the Kyber post-quantum key encapsulation mechanism.
//!
//! This crate provides a safe Rust interface to the Kyber algorithm, which is a
//! finalist in the NIST Post-Quantum Cryptography standardization process.
//!
//! ## Example
//!
//! ```rust
//! use kyber_rust::{generate_keypair, encapsulate, decapsulate};
//!
//! // Generate a keypair
//! let (public_key, secret_key) = generate_keypair().unwrap();
//!
//! // Encapsulate a shared secret
//! let (ciphertext, shared_secret_enc) = encapsulate(&public_key).unwrap();
//!
//! // Decapsulate the shared secret
//! let shared_secret_dec = decapsulate(&ciphertext, &secret_key).unwrap();
//!
//! // Verify that the shared secrets match
//! assert_eq!(shared_secret_enc, shared_secret_dec);
//! ```

use libloading::{Library, Symbol};
use std::os::raw::c_int;
use std::sync::Once;

pub const CRYPTO_PUBLICKEYBYTES: usize = 1184;
pub const CRYPTO_SECRETKEYBYTES: usize = 2400;
pub const CRYPTO_CIPHERTEXTBYTES: usize = 1088;
pub const CRYPTO_BYTES: usize = 32;

static INIT: Once = Once::new();
static mut LIBRARY: Option<Library> = None;

fn load_library() -> &'static Library {
    INIT.call_once(|| unsafe {
        LIBRARY = Some(Library::new("kyber.dll").expect("Failed to load kyber.dll"));
    });
    unsafe { LIBRARY.as_ref().unwrap() }
}

/// Generates a Kyber keypair.
///
/// Returns a tuple containing the public key and secret key.
pub fn generate_keypair(
) -> Result<([u8; CRYPTO_PUBLICKEYBYTES], [u8; CRYPTO_SECRETKEYBYTES]), String> {
    let mut pk = [0u8; CRYPTO_PUBLICKEYBYTES];
    let mut sk = [0u8; CRYPTO_SECRETKEYBYTES];

    let result = crypto_kem_keypair(&mut pk, &mut sk);
    if result != 0 {
        return Err(format!(
            "Keypair generation failed with error code: {}",
            result
        ));
    }

    Ok((pk, sk))
}

/// Encapsulates a shared secret using a public key.
///
/// Returns a tuple containing the ciphertext and the encapsulated shared secret.
pub fn encapsulate(
    pk: &[u8; CRYPTO_PUBLICKEYBYTES],
) -> Result<([u8; CRYPTO_CIPHERTEXTBYTES], [u8; CRYPTO_BYTES]), String> {
    let mut ct = [0u8; CRYPTO_CIPHERTEXTBYTES];
    let mut ss = [0u8; CRYPTO_BYTES];

    let result = crypto_kem_enc(&mut ct, &mut ss, pk);
    if result != 0 {
        return Err(format!("Encapsulation failed with error code: {}", result));
    }

    Ok((ct, ss))
}

/// Decapsulates a shared secret using a ciphertext and a secret key.
///
/// Returns the decapsulated shared secret.
pub fn decapsulate(
    ct: &[u8; CRYPTO_CIPHERTEXTBYTES],
    sk: &[u8; CRYPTO_SECRETKEYBYTES],
) -> Result<[u8; CRYPTO_BYTES], String> {
    let mut ss = [0u8; CRYPTO_BYTES];

    let result = crypto_kem_dec(&mut ss, ct, sk);
    if result != 0 {
        return Err(format!("Decapsulation failed with error code: {}", result));
    }

    Ok(ss)
}

fn crypto_kem_keypair(
    pk: &mut [u8; CRYPTO_PUBLICKEYBYTES],
    sk: &mut [u8; CRYPTO_SECRETKEYBYTES],
) -> i32 {
    let lib = load_library();
    unsafe {
        let func: Symbol<unsafe extern "C" fn(*mut u8, *mut u8) -> c_int> = lib
            .get(b"pqcrystals_kyber768_ref_keypair")
            .expect("Failed to load keypair function");
        func(pk.as_mut_ptr(), sk.as_mut_ptr())
    }
}

fn crypto_kem_enc(
    ct: &mut [u8; CRYPTO_CIPHERTEXTBYTES],
    ss: &mut [u8; CRYPTO_BYTES],
    pk: &[u8; CRYPTO_PUBLICKEYBYTES],
) -> i32 {
    let lib = load_library();
    unsafe {
        let func: Symbol<unsafe extern "C" fn(*mut u8, *mut u8, *const u8) -> c_int> = lib
            .get(b"pqcrystals_kyber768_ref_enc")
            .expect("Failed to load enc function");
        func(ct.as_mut_ptr(), ss.as_mut_ptr(), pk.as_ptr())
    }
}

fn crypto_kem_dec(
    ss: &mut [u8; CRYPTO_BYTES],
    ct: &[u8; CRYPTO_CIPHERTEXTBYTES],
    sk: &[u8; CRYPTO_SECRETKEYBYTES],
) -> i32 {
    let lib = load_library();
    unsafe {
        let func: Symbol<unsafe extern "C" fn(*mut u8, *const u8, *const u8) -> c_int> = lib
            .get(b"pqcrystals_kyber768_ref_dec")
            .expect("Failed to load dec function");
        func(ss.as_mut_ptr(), ct.as_ptr(), sk.as_ptr())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_generate_keypair() {
        let (pk, sk) = generate_keypair().unwrap();
        assert_eq!(pk.len(), CRYPTO_PUBLICKEYBYTES);
        assert_eq!(sk.len(), CRYPTO_SECRETKEYBYTES);
    }

    #[test]
    fn test_encapsulate() {
        let (pk, _) = generate_keypair().unwrap();
        let (ct, ss) = encapsulate(&pk).unwrap();
        assert_eq!(ct.len(), CRYPTO_CIPHERTEXTBYTES);
        assert_eq!(ss.len(), CRYPTO_BYTES);
    }

    #[test]
    fn test_decapsulate() {
        let (pk, sk) = generate_keypair().unwrap();
        let (ct, ss_enc) = encapsulate(&pk).unwrap();
        let ss_dec = decapsulate(&ct, &sk).unwrap();
        assert_eq!(ss_enc, ss_dec);
    }

    #[test]
    fn test_invalid_decapsulation() {
        let (pk1, _sk1) = generate_keypair().unwrap();
        let (_, sk2) = generate_keypair().unwrap();
        let (ct, ss_enc) = encapsulate(&pk1).unwrap();

        // Attempt to decapsulate with wrong secret key
        let ss_dec = decapsulate(&ct, &sk2).unwrap();

        // The decapsulated secret should be different from the original
        assert_ne!(ss_enc, ss_dec);
    }

    #[test]
    fn test_multiple_encapsulations() {
        let (pk, sk) = generate_keypair().unwrap();

        for _ in 0..10 {
            let (ct, ss_enc) = encapsulate(&pk).unwrap();
            let ss_dec = decapsulate(&ct, &sk).unwrap();
            assert_eq!(ss_enc, ss_dec);
        }
    }
}