kotoba_query_engine/
executor.rs

1//! Query Executor
2//!
3//! Executes optimized query plans against the graph database.
4
5use std::sync::Arc;
6use async_trait::async_trait;
7use serde::{Deserialize, Serialize};
8use serde_json::Value;
9use anyhow::Result;
10use futures::stream::{self, StreamExt};
11
12use crate::ast::*;
13use crate::types::*;
14use crate::planner::*;
15use crate::{ProjectionPort, IndexManagerPort};
16use kotoba_storage::KeyValueStore;
17
18/// Query executor with KeyValueStore backend
19pub struct QueryExecutor<T: KeyValueStore> {
20    storage: Arc<T>,
21}
22
23impl<T: KeyValueStore + 'static> QueryExecutor<T> {
24    /// Convert Vertex to serde_json::Value
25    fn vertex_to_json_value(&self, vertex: Vertex) -> serde_json::Value {
26        serde_json::json!({
27            "id": vertex.id,
28            "labels": vertex.labels,
29            "properties": vertex.properties
30        })
31    }
32
33    /// Convert Edge to serde_json::Value
34    fn edge_to_json_value(&self, edge: Edge) -> serde_json::Value {
35        serde_json::json!({
36            "id": edge.id,
37            "label": edge.label,
38            "from_vertex": edge.from_vertex,
39            "to_vertex": edge.to_vertex,
40            "properties": edge.properties
41        })
42    }
43
44    pub fn new(storage: Arc<T>) -> Self {
45        Self { storage }
46    }
47
48    /// Execute a query plan
49    pub async fn execute(
50        &self,
51        plan: ExecutionPlan,
52        context: crate::QueryContext,
53    ) -> Result<QueryResult> {
54        let mut current_result = ExecutionResult::Empty;
55
56        // Execute each step in order
57        for step in plan.steps {
58            current_result = match step {
59                ExecutionStep::Match(match_plan) => {
60                    self.execute_match(match_plan, current_result).await?
61                }
62                ExecutionStep::Filter(filter_plan) => {
63                    self.execute_filter(filter_plan, current_result).await?
64                }
65                ExecutionStep::GroupBy(group_by_plan) => {
66                    self.execute_group_by(group_by_plan, current_result).await?
67                }
68                ExecutionStep::Sort(sort_plan) => {
69                    self.execute_sort(sort_plan, current_result).await?
70                }
71                ExecutionStep::Limit(limit_clause) => {
72                    self.execute_limit(limit_clause, current_result).await?
73                }
74                ExecutionStep::Return(return_plan) => {
75                    return self.execute_return(return_plan, current_result).await;
76                }
77            };
78        }
79
80        // If no return step was executed, return the current result
81        Ok(QueryResult::from(current_result))
82    }
83
84    async fn execute_match(
85        &self,
86        match_plan: MatchPlan,
87        _previous_result: ExecutionResult,
88    ) -> Result<ExecutionResult> {
89        let mut results = Vec::new();
90
91        // Execute vertex scans
92        for vertex_scan in match_plan.vertex_scans {
93            let vertices = self.execute_vertex_scan(vertex_scan).await?;
94            results.extend(vertices);
95        }
96
97        // Execute edge scans and joins
98        for edge_scan in match_plan.edge_scans {
99            let edges = self.execute_edge_scan(edge_scan).await?;
100            // TODO: Implement proper joining logic
101            results.extend(edges.into_iter().map(|e| vec![e]));
102        }
103
104        Ok(ExecutionResult::Rows(results))
105    }
106
107    async fn execute_vertex_scan(&self, scan_plan: VertexScanPlan) -> Result<Vec<Vec<Value>>> {
108        let mut results = Vec::new();
109
110        // For now, implement basic vertex scanning using KeyValueStore
111        // TODO: Implement more sophisticated scanning with filters and indices
112
113        let prefix = "vertex:".to_string();
114        let vertex_keys = self.storage.scan(prefix.as_bytes()).await?;
115
116        for key_bytes in vertex_keys {
117            if let Ok(key_str) = std::str::from_utf8(&key_bytes.0) {
118                if key_str.starts_with("vertex:") {
119                    if let Some(vertex_data) = self.storage.get(&key_bytes.0).await? {
120                        if let Ok(vertex_json) = serde_json::from_slice::<Value>(&vertex_data) {
121                            results.push(vec![vertex_json]);
122                        }
123                    }
124                }
125            }
126        }
127
128        Ok(results)
129    }
130
131    async fn execute_edge_scan(&self, scan_plan: EdgeScanPlan) -> Result<Vec<Value>> {
132        let mut results = Vec::new();
133
134        // For now, implement basic edge scanning using KeyValueStore
135        // TODO: Implement more sophisticated scanning with filters and indices
136
137        let prefix = "edge:".to_string();
138        let edge_keys = self.storage.scan(prefix.as_bytes()).await?;
139
140        for key_bytes in edge_keys {
141            if let Ok(key_str) = std::str::from_utf8(&key_bytes.0) {
142                if key_str.starts_with("edge:") {
143                    if let Some(edge_data) = self.storage.get(&key_bytes.0).await? {
144                        if let Ok(edge_json) = serde_json::from_slice::<Value>(&edge_data) {
145                            results.push(edge_json);
146                        }
147                    }
148                }
149            }
150        }
151
152        Ok(results)
153    }
154
155    async fn execute_filter(
156        &self,
157        filter_plan: FilterPlan,
158        input: ExecutionResult,
159    ) -> Result<ExecutionResult> {
160        match input {
161            ExecutionResult::Rows(rows) => {
162                let mut filtered_rows = Vec::new();
163
164                for row in rows {
165                    if self.evaluate_filter(&filter_plan, &row).await? {
166                        filtered_rows.push(row);
167                    }
168                }
169
170                Ok(ExecutionResult::Rows(filtered_rows))
171            }
172            _ => Ok(input),
173        }
174    }
175
176    async fn evaluate_filter(&self, _filter_plan: &FilterPlan, _row: &[Value]) -> Result<bool> {
177        // TODO: Implement filter evaluation
178        // For now, return true for all rows
179        Ok(true)
180    }
181
182    async fn execute_group_by(
183        &self,
184        group_by_plan: GroupByPlan,
185        input: ExecutionResult,
186    ) -> Result<ExecutionResult> {
187        match input {
188            ExecutionResult::Rows(rows) => {
189                let mut groups = std::collections::HashMap::new();
190
191                for row in rows {
192                    let key = self.compute_group_key(&group_by_plan.keys, &row).await?;
193                    groups.entry(key).or_insert_with(Vec::new).push(row);
194                }
195
196                Ok(ExecutionResult::Grouped(groups))
197            }
198            _ => Ok(input),
199        }
200    }
201
202    async fn compute_group_key(&self, _keys: &[ValueExpression], _row: &[Value]) -> Result<String> {
203        // TODO: Implement group key computation
204        Ok("default_group".to_string())
205    }
206
207    async fn execute_sort(
208        &self,
209        sort_plan: SortPlan,
210        input: ExecutionResult,
211    ) -> Result<ExecutionResult> {
212        match input {
213            ExecutionResult::Rows(mut rows) => {
214                // TODO: Implement sorting based on sort keys
215                // For now, just return as-is
216                Ok(ExecutionResult::Rows(rows))
217            }
218            _ => Ok(input),
219        }
220    }
221
222    async fn execute_limit(
223        &self,
224        limit_clause: LimitClause,
225        input: ExecutionResult,
226    ) -> Result<ExecutionResult> {
227        match input {
228            ExecutionResult::Rows(rows) => {
229                let start = limit_clause.offset.unwrap_or(0) as usize;
230                let end = start + limit_clause.count as usize;
231                let limited_rows = rows.into_iter()
232                    .skip(start)
233                    .take(limit_clause.count as usize)
234                    .collect();
235
236                Ok(ExecutionResult::Rows(limited_rows))
237            }
238            _ => Ok(input),
239        }
240    }
241
242    async fn execute_return(
243        &self,
244        return_plan: ReturnPlan,
245        input: ExecutionResult,
246    ) -> Result<QueryResult> {
247        let mut results = Vec::new();
248
249        match input {
250            ExecutionResult::Rows(rows) => {
251                for row in rows {
252                    let mut result_row = Vec::new();
253
254                    for item in &return_plan.items {
255                        let value = self.evaluate_expression(&item.expression, &row).await?;
256                        result_row.push(value);
257                    }
258
259                    results.push(result_row);
260                }
261            }
262            ExecutionResult::Grouped(groups) => {
263                // Handle grouped results
264                for (_key, rows) in groups {
265                    // TODO: Implement aggregation
266                    if let Some(row) = rows.first() {
267                        let mut result_row = Vec::new();
268                        for item in &return_plan.items {
269                            let value = self.evaluate_expression(&item.expression, row).await?;
270                            result_row.push(value);
271                        }
272                        results.push(result_row);
273                    }
274                }
275            }
276            ExecutionResult::Empty => {}
277        }
278
279        // Apply DISTINCT if requested
280        if return_plan.distinct {
281            // TODO: Implement distinct logic
282        }
283
284        let rows_returned = results.len() as u64;
285        Ok(QueryResult {
286            columns: return_plan.items.iter()
287                .map(|item| item.alias.clone().unwrap_or_else(|| "column".to_string()))
288                .collect(),
289            rows: results,
290            statistics: crate::QueryStatistics {
291                total_time_ms: 0,
292                planning_time_ms: 0,
293                execution_time_ms: 0,
294                rows_scanned: 0,
295                rows_returned,
296                indices_used: vec![],
297            },
298        })
299    }
300
301    async fn evaluate_expression(&self, _expression: &ValueExpression, _row: &[serde_json::Value]) -> Result<serde_json::Value> {
302        // TODO: Implement expression evaluation
303        // For now, return a placeholder
304        Ok(serde_json::Value::String("placeholder".to_string()))
305    }
306}
307
308/// Statement executor for DDL/DML operations
309pub struct StatementExecutor<T: KeyValueStore> {
310    storage: Arc<T>,
311}
312
313impl<T: KeyValueStore + 'static> StatementExecutor<T> {
314    pub fn new(storage: Arc<T>) -> Self {
315        Self { storage }
316    }
317
318    pub async fn execute(
319        &self,
320        _statement: GqlStatement,
321        _context: crate::QueryContext,
322    ) -> Result<StatementResult> {
323        // TODO: Implement statement execution
324        Ok(StatementResult {
325            success: true,
326            message: "Statement executed successfully".to_string(),
327            affected_rows: None,
328            execution_time_ms: 0,
329        })
330    }
331}
332
333/// Execution result types
334#[derive(Debug, Clone)]
335pub enum ExecutionResult {
336    Empty,
337    Rows(Vec<Vec<serde_json::Value>>),
338    Grouped(std::collections::HashMap<String, Vec<Vec<serde_json::Value>>>),
339}
340
341
342impl From<ExecutionResult> for QueryResult {
343    fn from(result: ExecutionResult) -> Self {
344        match result {
345            ExecutionResult::Rows(rows) => {
346                let rows_returned = rows.len() as u64;
347                QueryResult {
348                    columns: vec!["result".to_string()], // Placeholder
349                    rows,
350                    statistics: crate::QueryStatistics {
351                        total_time_ms: 0,
352                        planning_time_ms: 0,
353                        execution_time_ms: 0,
354                        rows_scanned: 0,
355                        rows_returned,
356                        indices_used: vec![],
357                    },
358                }
359            },
360            _ => QueryResult {
361                columns: Vec::new(),
362                rows: Vec::new(),
363                statistics: crate::QueryStatistics {
364                    total_time_ms: 0,
365                    planning_time_ms: 0,
366                    execution_time_ms: 0,
367                    rows_scanned: 0,
368                    rows_returned: 0u64,
369                    indices_used: vec![],
370                },
371            },
372        }
373    }
374}
375
376#[cfg(test)]
377mod tests {
378    use super::*;
379
380    #[tokio::test]
381    async fn test_query_executor_creation() {
382        // Test that executor can be created
383        // This will be expanded with actual execution tests
384    }
385}