kn0sys_ndarray_stats/
sort.rs

1use indexmap::IndexMap;
2use ndarray::prelude::*;
3use ndarray::{Data, DataMut, Slice};
4use rand::prelude::*;
5
6/// Methods for sorting and partitioning 1-D arrays.
7pub trait Sort1dExt<A, S>
8where
9    S: Data<Elem = A>,
10{
11    /// Return the element that would occupy the `i`-th position if
12    /// the array were sorted in increasing order.
13    ///
14    /// The array is shuffled **in place** to retrieve the desired element:
15    /// no copy of the array is allocated.
16    /// After the shuffling, all elements with an index smaller than `i`
17    /// are smaller than the desired element, while all elements with
18    /// an index greater or equal than `i` are greater than or equal
19    /// to the desired element.
20    ///
21    /// No other assumptions should be made on the ordering of the
22    /// elements after this computation.
23    ///
24    /// Complexity ([quickselect](https://en.wikipedia.org/wiki/Quickselect)):
25    /// - average case: O(`n`);
26    /// - worst case: O(`n`^2);
27    /// where n is the number of elements in the array.
28    ///
29    /// **Panics** if `i` is greater than or equal to `n`.
30    fn get_from_sorted_mut(&mut self, i: usize) -> A
31    where
32        A: Ord + Clone,
33        S: DataMut;
34
35    /// A bulk version of [`get_from_sorted_mut`], optimized to retrieve multiple
36    /// indexes at once.
37    /// It returns an `IndexMap`, with indexes as keys and retrieved elements as
38    /// values.
39    /// The `IndexMap` is sorted with respect to indexes in increasing order:
40    /// this ordering is preserved when you iterate over it (using `iter`/`into_iter`).
41    ///
42    /// **Panics** if any element in `indexes` is greater than or equal to `n`,
43    /// where `n` is the length of the array..
44    ///
45    /// [`get_from_sorted_mut`]: #tymethod.get_from_sorted_mut
46    fn get_many_from_sorted_mut<S2>(&mut self, indexes: &ArrayBase<S2, Ix1>) -> IndexMap<usize, A>
47    where
48        A: Ord + Clone,
49        S: DataMut,
50        S2: Data<Elem = usize>;
51
52    /// Partitions the array in increasing order based on the value initially
53    /// located at `pivot_index` and returns the new index of the value.
54    ///
55    /// The elements are rearranged in such a way that the value initially
56    /// located at `pivot_index` is moved to the position it would be in an
57    /// array sorted in increasing order. The return value is the new index of
58    /// the value after rearrangement. All elements smaller than the value are
59    /// moved to its left and all elements equal or greater than the value are
60    /// moved to its right. The ordering of the elements in the two partitions
61    /// is undefined.
62    ///
63    /// `self` is shuffled **in place** to operate the desired partition:
64    /// no copy of the array is allocated.
65    ///
66    /// The method uses Hoare's partition algorithm.
67    /// Complexity: O(`n`), where `n` is the number of elements in the array.
68    /// Average number of element swaps: n/6 - 1/3 (see
69    /// [link](https://cs.stackexchange.com/questions/11458/quicksort-partitioning-hoare-vs-lomuto/11550))
70    ///
71    /// **Panics** if `pivot_index` is greater than or equal to `n`.
72    ///
73    /// # Example
74    ///
75    /// ```
76    /// use ndarray::array;
77    /// use kn0sys_ndarray_stats::Sort1dExt;
78    ///
79    /// let mut data = array![3, 1, 4, 5, 2];
80    /// let pivot_index = 2;
81    /// let pivot_value = data[pivot_index];
82    ///
83    /// // Partition by the value located at `pivot_index`.
84    /// let new_index = data.partition_mut(pivot_index);
85    /// // The pivot value is now located at `new_index`.
86    /// assert_eq!(data[new_index], pivot_value);
87    /// // Elements less than that value are moved to the left.
88    /// for i in 0..new_index {
89    ///     assert!(data[i] < pivot_value);
90    /// }
91    /// // Elements greater than or equal to that value are moved to the right.
92    /// for i in (new_index + 1)..data.len() {
93    ///      assert!(data[i] >= pivot_value);
94    /// }
95    /// ```
96    fn partition_mut(&mut self, pivot_index: usize) -> usize
97    where
98        A: Ord + Clone,
99        S: DataMut;
100
101    private_decl! {}
102}
103
104impl<A, S> Sort1dExt<A, S> for ArrayBase<S, Ix1>
105where
106    S: Data<Elem = A>,
107{
108    fn get_from_sorted_mut(&mut self, i: usize) -> A
109    where
110        A: Ord + Clone,
111        S: DataMut,
112    {
113        let n = self.len();
114        if n == 1 {
115            self[0].clone()
116        } else {
117            let mut rng = rand::rng();
118            let pivot_index = rng.random_range(0..n);
119            let partition_index = self.partition_mut(pivot_index);
120            if i < partition_index {
121                self.slice_axis_mut(Axis(0), Slice::from(..partition_index))
122                    .get_from_sorted_mut(i)
123            } else if i == partition_index {
124                self[i].clone()
125            } else {
126                self.slice_axis_mut(Axis(0), Slice::from(partition_index + 1..))
127                    .get_from_sorted_mut(i - (partition_index + 1))
128            }
129        }
130    }
131
132    fn get_many_from_sorted_mut<S2>(&mut self, indexes: &ArrayBase<S2, Ix1>) -> IndexMap<usize, A>
133    where
134        A: Ord + Clone,
135        S: DataMut,
136        S2: Data<Elem = usize>,
137    {
138        let mut deduped_indexes: Vec<usize> = indexes.to_vec();
139        deduped_indexes.sort_unstable();
140        deduped_indexes.dedup();
141
142        get_many_from_sorted_mut_unchecked(self, &deduped_indexes)
143    }
144
145    fn partition_mut(&mut self, pivot_index: usize) -> usize
146    where
147        A: Ord + Clone,
148        S: DataMut,
149    {
150        let pivot_value = self[pivot_index].clone();
151        self.swap(pivot_index, 0);
152        let n = self.len();
153        let mut i = 1;
154        let mut j = n - 1;
155        loop {
156            loop {
157                if i > j {
158                    break;
159                }
160                if self[i] >= pivot_value {
161                    break;
162                }
163                i += 1;
164            }
165            while pivot_value <= self[j] {
166                if j == 1 {
167                    break;
168                }
169                j -= 1;
170            }
171            if i >= j {
172                break;
173            } else {
174                self.swap(i, j);
175                i += 1;
176                j -= 1;
177            }
178        }
179        self.swap(0, i - 1);
180        i - 1
181    }
182
183    private_impl! {}
184}
185
186/// To retrieve multiple indexes from the sorted array in an optimized fashion,
187/// [get_many_from_sorted_mut] first of all sorts and deduplicates the
188/// `indexes` vector.
189///
190/// `get_many_from_sorted_mut_unchecked` does not perform this sorting and
191/// deduplication, assuming that the user has already taken care of it.
192///
193/// Useful when you have to call [get_many_from_sorted_mut] multiple times
194/// using the same indexes.
195///
196/// [get_many_from_sorted_mut]: ../trait.Sort1dExt.html#tymethod.get_many_from_sorted_mut
197pub(crate) fn get_many_from_sorted_mut_unchecked<A, S>(
198    array: &mut ArrayBase<S, Ix1>,
199    indexes: &[usize],
200) -> IndexMap<usize, A>
201where
202    A: Ord + Clone,
203    S: DataMut<Elem = A>,
204{
205    if indexes.is_empty() {
206        return IndexMap::new();
207    }
208
209    // Since `!indexes.is_empty()` and indexes must be in-bounds, `array` must
210    // be non-empty.
211    let mut values = vec![array[0].clone(); indexes.len()];
212    _get_many_from_sorted_mut_unchecked(array.view_mut(), &mut indexes.to_owned(), &mut values);
213
214    // We convert the vector to a more search-friendly `IndexMap`.
215    indexes.iter().cloned().zip(values.into_iter()).collect()
216}
217
218/// This is the recursive portion of `get_many_from_sorted_mut_unchecked`.
219///
220/// `indexes` is the list of indexes to get. `indexes` is mutable so that it
221/// can be used as scratch space for this routine; the value of `indexes` after
222/// calling this routine should be ignored.
223///
224/// `values` is a pre-allocated slice to use for writing the output. Its
225/// initial element values are ignored.
226fn _get_many_from_sorted_mut_unchecked<A>(
227    mut array: ArrayViewMut1<'_, A>,
228    indexes: &mut [usize],
229    values: &mut [A],
230) where
231    A: Ord + Clone,
232{
233    let n = array.len();
234    debug_assert!(n >= indexes.len()); // because indexes must be unique and in-bounds
235    debug_assert_eq!(indexes.len(), values.len());
236
237    if indexes.is_empty() {
238        // Nothing to do in this case.
239        return;
240    }
241
242    // At this point, `n >= 1` since `indexes.len() >= 1`.
243    if n == 1 {
244        // We can only reach this point if `indexes.len() == 1`, so we only
245        // need to assign the single value, and then we're done.
246        debug_assert_eq!(indexes.len(), 1);
247        values[0] = array[0].clone();
248        return;
249    }
250
251    // We pick a random pivot index: the corresponding element is the pivot value
252    let mut rng = rand::rng();
253    let pivot_index = rng.random_range(0..n);
254
255    // We partition the array with respect to the pivot value.
256    // The pivot value moves to `array_partition_index`.
257    // Elements strictly smaller than the pivot value have indexes < `array_partition_index`.
258    // Elements greater or equal to the pivot value have indexes > `array_partition_index`.
259    let array_partition_index = array.partition_mut(pivot_index);
260
261    // We use a divide-and-conquer strategy, splitting the indexes we are
262    // searching for (`indexes`) and the corresponding portions of the output
263    // slice (`values`) into pieces with respect to `array_partition_index`.
264    let (found_exact, index_split) = match indexes.binary_search(&array_partition_index) {
265        Ok(index) => (true, index),
266        Err(index) => (false, index),
267    };
268    let (smaller_indexes, other_indexes) = indexes.split_at_mut(index_split);
269    let (smaller_values, other_values) = values.split_at_mut(index_split);
270    let (bigger_indexes, bigger_values) = if found_exact {
271        other_values[0] = array[array_partition_index].clone(); // Write exactly found value.
272        (&mut other_indexes[1..], &mut other_values[1..])
273    } else {
274        (other_indexes, other_values)
275    };
276
277    // We search recursively for the values corresponding to strictly smaller
278    // indexes to the left of `partition_index`.
279    _get_many_from_sorted_mut_unchecked(
280        array.slice_axis_mut(Axis(0), Slice::from(..array_partition_index)),
281        smaller_indexes,
282        smaller_values,
283    );
284
285    // We search recursively for the values corresponding to strictly bigger
286    // indexes to the right of `partition_index`. Since only the right portion
287    // of the array is passed in, the indexes need to be shifted by length of
288    // the removed portion.
289    bigger_indexes
290        .iter_mut()
291        .for_each(|x| *x -= array_partition_index + 1);
292    _get_many_from_sorted_mut_unchecked(
293        array.slice_axis_mut(Axis(0), Slice::from(array_partition_index + 1..)),
294        bigger_indexes,
295        bigger_values,
296    );
297}