1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
use crate::bindings::{cublasOperation_t, cublasSgemmStridedBatched, cublasSgemm_v2, cudnnConvolutionFwdAlgo_t};
use crate::wrapper::descriptor::{
    ActivationDescriptor, ConvolutionDescriptor, FilterDescriptor, TensorDescriptor, TensorOpDescriptor,
};
use crate::wrapper::handle::{CublasHandle, CudnnHandle};
use crate::wrapper::mem::device::DevicePtr;
use crate::wrapper::operation::{run_conv_bias_res_activation, run_tensor_op};
use crate::wrapper::status::Status;

/// The arguments necessary for a fused convolution call.
#[derive(Debug)]
pub struct FusedConvolutionArgs<P = DevicePtr> {
    pub conv_desc: ConvolutionDescriptor,

    pub algo: cudnnConvolutionFwdAlgo_t,
    pub work_ptr: P,
    pub work_size_bytes: usize,

    pub filter_desc: FilterDescriptor,
    pub filter_ptr: P,
    pub input_desc: TensorDescriptor,
    pub input_ptr: P,

    pub res_ptr: Option<P>,
    pub bias_desc: TensorDescriptor,
    pub bias_ptr: P,

    pub act_desc: ActivationDescriptor,

    pub output_desc: TensorDescriptor,
    pub output_ptr: P,
}

impl FusedConvolutionArgs {
    pub unsafe fn run(&self, handle: &CudnnHandle) {
        run_conv_bias_res_activation(
            handle,
            &self.act_desc,
            &self.conv_desc,
            self.algo,
            &self.work_ptr,
            self.work_size_bytes,
            &self.filter_desc,
            &self.filter_ptr,
            &self.input_desc,
            &self.input_ptr,
            self.res_ptr.as_ref(),
            &self.bias_desc,
            &self.bias_ptr,
            &self.output_desc,
            &self.output_ptr,
        )
    }
}

#[derive(Debug)]
pub struct TensorOpArgs<P = DevicePtr> {
    pub op_desc: TensorOpDescriptor,
    pub alpha_1: f32,
    pub input_1_desc: TensorDescriptor,
    pub input_1_ptr: P,
    pub alpha_2: f32,
    pub input_2_desc: TensorDescriptor,
    pub input_2_ptr: P,
    pub beta: f32,
    pub output_desc: TensorDescriptor,
    pub output_ptr: P,
}

impl TensorOpArgs {
    pub unsafe fn run(&self, handle: &CudnnHandle) {
        run_tensor_op(
            handle,
            &self.op_desc,
            self.alpha_1,
            &self.input_1_desc,
            &self.input_1_ptr,
            self.alpha_2,
            &self.input_2_desc,
            &self.input_2_ptr,
            self.beta,
            &self.output_desc,
            &self.output_ptr,
        )
    }
}

#[derive(Debug, Clone)]
pub struct MatMulOperand<P = DevicePtr> {
    pub ptr: P,
    pub trans: cublasOperation_t,
    pub ld: i32,
    pub stride: i64,
}

impl<P> MatMulOperand<P> {
    pub fn map_ptr<K>(self, mut f: impl FnMut(P) -> K) -> MatMulOperand<K> {
        MatMulOperand {
            ptr: f(self.ptr),
            trans: self.trans,
            ld: self.ld,
            stride: self.stride,
        }
    }
}

#[derive(Debug)]
pub struct BatchedMatMulArgs<P = DevicePtr> {
    pub m: i32,
    pub n: i32,
    pub k: i32,
    pub alpha: f32,
    pub beta: f32,
    pub a: MatMulOperand<P>,
    pub b: MatMulOperand<P>,
    pub c: MatMulOperand<P>,
    pub batch_count: i32,
}

impl BatchedMatMulArgs {
    /// Call `cublasSgemmStridedBatched` with the right arguments. If `batch_count == 1`, call `cublasSgemm_v2` instead.
    pub unsafe fn run(&self, handle: &CublasHandle) {
        assert_eq!(
            self.c.trans,
            cublasOperation_t::CUBLAS_OP_N,
            "A transpose output is not supported, instead you can flip and transpose the inputs"
        );

        // TODO does this actually help performance in any way?
        if self.batch_count == 1 {
            cublasSgemm_v2(
                handle.inner(),
                self.a.trans,
                self.b.trans,
                self.m,
                self.n,
                self.k,
                &(self.alpha) as *const f32,
                self.a.ptr.ptr() as *const f32,
                self.a.ld,
                self.b.ptr.ptr() as *const f32,
                self.b.ld,
                &(self.beta) as *const f32,
                self.c.ptr.ptr() as *mut f32,
                self.c.ld,
            )
            .unwrap()
        } else {
            cublasSgemmStridedBatched(
                handle.inner(),
                self.a.trans,
                self.b.trans,
                self.m,
                self.n,
                self.k,
                &(self.alpha) as *const f32,
                self.a.ptr.ptr() as *const f32,
                self.a.ld,
                self.a.stride,
                self.b.ptr.ptr() as *const f32,
                self.b.ld,
                self.b.stride,
                &(self.beta) as *const f32,
                self.c.ptr.ptr() as *mut f32,
                self.c.ld,
                self.c.stride,
                self.batch_count,
            )
            .unwrap()
        }
    }
}