1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
use std::cmp::Reverse;
use std::fmt::{Debug, Formatter};
use std::iter::zip;

use itertools::{zip_eq, Itertools};
use kn_cuda_sys::bindings::cudnnDataType_t;

use kn_cuda_sys::wrapper::descriptor::{FilterDescriptor, MatrixLayout, TensorDescriptor};
use kn_graph::graph::SliceRange;

#[derive(Clone, Eq, PartialEq)]
pub struct StridedShape {
    shape: Vec<usize>,
    strides: Vec<isize>,
    has_simple_strides: bool,
    has_dense_strides: bool,
}

#[derive(Clone, Eq, PartialEq)]
pub struct ViewError {
    old: StridedShape,
    new: Vec<usize>,
}

impl StridedShape {
    pub fn new(shape: Vec<usize>, strides: Vec<isize>) -> Self {
        assert_eq!(shape.len(), strides.len(), "Shape and stride rank mismatch");

        let has_simple_strides = &strides == &simple_strides(&shape);
        let has_dense_strides = has_dense_strides(&shape, &strides);

        if has_simple_strides {
            assert!(
                has_dense_strides,
                "Simple should imply dense, {{ shape: {:?}, strides: {:?} }}",
                shape, strides
            );
        }

        let result = StridedShape {
            shape,
            strides,
            has_simple_strides,
            has_dense_strides,
        };

        result
    }

    pub fn new_simple(shape: Vec<usize>) -> Self {
        let strides = simple_strides(&shape);
        StridedShape::new(shape, strides)
    }

    pub fn shape(&self) -> &[usize] {
        &self.shape
    }

    pub fn strides(&self) -> &[isize] {
        &self.strides
    }

    pub fn rank(&self) -> usize {
        self.shape.len()
    }

    pub fn has_simple_strides(&self) -> bool {
        self.has_simple_strides
    }

    pub fn has_dense_strides(&self) -> bool {
        self.has_dense_strides
    }

    pub fn visit_strided_indices(&self, mut f: impl FnMut(isize)) {
        visit_strided_indices_impl(0, &self.shape, &self.strides, &mut f)
    }

    pub fn size(&self) -> usize {
        self.shape.iter().copied().product()
    }

    pub fn slice(&self, axis: usize, range: SliceRange) -> StridedShape {
        assert!(axis < self.rank(), "Rank {} out of bounds for {:?}", self.rank(), self);
        range.assert_in_bounds(self.shape[axis]);

        let mut new_shape = self.shape.clone();
        let mut new_strides = self.strides.clone();

        let SliceRange { start, end, step } = range;

        new_shape[axis] = (end - start) / step;
        new_strides[axis] *= step as isize;

        StridedShape::new(new_shape, new_strides)
    }

    pub fn flip(&self, axis: usize) -> StridedShape {
        let new_shape = self.shape.clone();
        let mut new_strides = self.strides.clone();

        // just flip the stride of the axis
        new_strides[axis] *= -1;

        StridedShape::new(new_shape, new_strides)
    }

    pub fn broadcast(&self, new_shape: Vec<usize>) -> StridedShape {
        assert_eq!(
            self.rank(),
            new_shape.len(),
            "Can only broadcast to same rank, got {:?} and {:?}",
            self,
            new_shape
        );

        let new_strides = (0..self.rank())
            .map(|i| {
                if new_shape[i] == self.shape[i] {
                    self.strides[i]
                } else {
                    assert_eq!(
                        self.shape[i], 1,
                        "Broadcast mismatch between {:?} and {:?} at axis {}",
                        self, new_shape, i
                    );
                    0
                }
            })
            .collect_vec();

        StridedShape::new(new_shape, new_strides)
    }

    pub fn view(&self, new_shape: Vec<usize>) -> Result<StridedShape, ViewError> {
        // implementation originally based on pytorch computeStride_impl:
        // https://github.com/pytorch/pytorch/blob/560cd881956bbf425251d63f0ff0f9085a759447/aten/src/ATen/TensorUtils.cpp#L335-L346

        let new_size = new_shape.iter().copied().product::<usize>();
        assert_eq!(
            self.size(),
            new_size,
            "Size cannot change during view, cannot go from {:?} to {:?}",
            self,
            new_shape
        );

        if self.size() == 0 || self.rank() == 0 {
            return Ok(StridedShape::new_simple(new_shape));
        }

        let mut new_strides = vec![0; new_shape.len()];
        let mut next_d = 0;

        let mut failed = false;

        self.for_each_continuous_group(|group_size, group_stride| {
            if failed {
                return;
            };

            let mut left_group_size = group_size;
            while left_group_size > 1 {
                if left_group_size % new_shape[next_d] == 0 {
                    left_group_size /= new_shape[next_d];
                    new_strides[next_d] = left_group_size as isize * group_stride;
                    next_d += 1;
                } else {
                    failed = true;
                    return;
                }
            }
        });

        if failed {
            Err(ViewError {
                old: self.clone(),
                new: new_shape,
            })
        } else {
            // complete the strides for trailing 1-sized dims
            for d in next_d..new_shape.len() {
                assert_eq!(new_shape[d], 1);
                new_strides[d] = 1;
            }

            Ok(StridedShape::new(new_shape, new_strides))
        }
    }

    fn for_each_continuous_group(&self, mut f: impl FnMut(usize, isize)) {
        if self.size() == 0 || self.rank() == 0 {
            f(0, 1);
            return;
        }

        let mut group_size = 1;
        let mut prev_stride = None;

        for (&d_size, &d_stride) in zip_eq(&self.shape, &self.strides) {
            if let Some(prev_stride) = prev_stride {
                if prev_stride != d_size as isize * d_stride {
                    //finish previous group
                    f(group_size, prev_stride);
                    group_size = 1;
                }
            }

            group_size *= d_size;
            prev_stride = Some(d_stride)
        }

        if let Some(prev_stride) = prev_stride {
            //finish last group
            f(group_size, prev_stride)
        }
    }

    pub fn permute(&self, permutation: &[usize]) -> StridedShape {
        assert_eq!(permutation.len(), self.rank());
        assert!(permutation.iter().all_unique());

        // just permute the shape and strides
        let new_shape = permutation.iter().map(|&i| self.shape()[i]).collect();
        let new_strides = permutation.iter().map(|&i| self.strides()[i]).collect();

        StridedShape::new(new_shape, new_strides)
    }

    pub fn repeat_unary(&self, axis: usize, count: usize) -> StridedShape {
        assert!(axis < self.rank());
        assert_eq!(self.shape[axis], 1);

        let mut new_shape = self.shape.clone();
        let mut new_strides = self.strides.clone();

        new_shape[axis] = count;
        new_strides[axis] = 0;

        StridedShape::new(new_shape, new_strides)
    }

    pub fn descriptor(&self, dtype: cudnnDataType_t) -> TensorDescriptor {
        let mut shape = self.shape.iter().map(|&x| x as i32).collect_vec();
        let mut strides = self.strides.iter().map(|&x| x as i32).collect_vec();

        // tensor descriptors and some cudnn operations seem to break with ranks < 4,
        //   so pad the rank until it's large enough
        while shape.len() < 4 {
            shape.push(1);
            strides.push(1);
        }

        TensorDescriptor::new(shape, strides, dtype)
    }

    pub fn filter_descriptor(&self, dtype: cudnnDataType_t) -> FilterDescriptor {
        assert_eq!(4, self.rank(), "Filter must have rank 4");
        assert!(self.has_simple_strides(), "Filter must have simple strides");

        let dims = self.shape();
        FilterDescriptor::new(dims[0] as i32, dims[1] as i32, dims[2] as i32, dims[3] as i32, dtype)
    }

    pub fn matrix_layout(&self) -> MatrixLayout {
        assert_eq!(3, self.rank(), "Matrix must have rank 3");

        let shape = [self.shape[0], self.shape[1], self.shape[2]];
        let strides = [self.strides[0], self.strides[1], self.strides[2]];

        MatrixLayout::new(shape, strides).unwrap_or_else(|| panic!("Failed to convert {:?} to MatrixLayout", self))
    }

    pub fn remove(&self, axis: usize) -> StridedShape {
        assert!(axis < self.rank(), "Axis {} out of bounds for {:?}", axis, self);

        let mut new_shape = self.shape.clone();
        let mut new_strides = self.strides.clone();

        new_shape.remove(axis);
        new_strides.remove(axis);

        StridedShape::new(new_shape, new_strides)
    }
}

impl Debug for StridedShape {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("StridedShape")
            .field("shape", &self.shape)
            .field("strides", &self.strides)
            .finish()
    }
}

fn simple_strides(shape: &[usize]) -> Vec<isize> {
    let mut result = vec![];
    let mut next_stride = 1;

    for &size in shape.iter().rev() {
        result.push(next_stride as isize);
        next_stride *= size;
    }

    result.reverse();
    result
}

/// Whether the given shape covers every value within its data range.
/// This is equivalent to asking whether any possible permutation of the shape with abs strides has simple strides.
fn has_dense_strides(shape: &[usize], strides: &[isize]) -> bool {
    assert_eq!(shape.len(), strides.len());

    if shape.iter().copied().product::<usize>() == 0 {
        return true;
    }

    let pairs = zip(shape.iter().copied(), strides.iter().copied().map(|x| x.abs()))
        .sorted_by_key(|x| Reverse(x.1))
        .collect_vec();

    let sorted_shape = pairs.iter().map(|&x| x.0).collect_vec();
    let sorted_strides = pairs.iter().map(|&x| x.1).collect_vec();

    simple_strides(&sorted_shape) == sorted_strides
}

fn visit_strided_indices_impl(start: isize, shape: &[usize], strides: &[isize], f: &mut impl FnMut(isize)) {
    match shape {
        [] => f(start as isize),
        [size_curr, size_rest @ ..] => {
            for i in 0..*size_curr {
                let i_start = start + i as isize * strides[0];
                visit_strided_indices_impl(i_start, size_rest, &strides[1..], f)
            }
        }
    }
}

impl Debug for ViewError {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        write!(f, "Cannot view shape {:?} as {:?}", self.old, self.new)
    }
}

#[cfg(test)]
mod test {
    use kn_graph::graph::SliceRange;

    use crate::shape::StridedShape;

    #[test]
    fn properties_positive() {
        let simple = StridedShape::new(vec![2, 3], vec![3, 1]);
        assert!(simple.has_simple_strides);
        assert!(simple.has_dense_strides);

        let dense = StridedShape::new(vec![3, 2], vec![1, 3]);
        assert!(!dense.has_simple_strides);
        assert!(dense.has_dense_strides);

        let neither = StridedShape::new(vec![3, 2], vec![8, 10]);
        assert!(!neither.has_simple_strides);
        assert!(!neither.has_dense_strides);
    }

    #[test]
    fn properties_negative() {
        let simple = StridedShape::new(vec![2, 3], vec![3, -1]);
        assert!(!simple.has_simple_strides);
        assert!(simple.has_dense_strides);
    }

    fn collect_groups(shape: &StridedShape) -> (Vec<usize>, Vec<isize>) {
        let mut sizes = vec![];
        let mut strides = vec![];
        shape.for_each_continuous_group(|group_size, group_stride| {
            sizes.push(group_size);
            strides.push(group_stride);
        });
        (sizes, strides)
    }

    #[test]
    fn view_rank_zero() {
        let shape = StridedShape::new(vec![], vec![]);
        assert_eq!(collect_groups(&shape), (vec![0], vec![1]),);
        assert_eq!(
            shape.view(vec![1, 1, 1]),
            Ok(StridedShape::new(vec![1, 1, 1], vec![1, 1, 1])),
        );
    }

    #[test]
    fn view_size_zero() {
        let shape = StridedShape::new(vec![2, 3, 0, 5], vec![0, 0, 0, 2]);
        assert_eq!(collect_groups(&shape), (vec![0], vec![1]));
        assert_eq!(shape.view(vec![0]), Ok(StridedShape::new(vec![0], vec![1])));
        assert_eq!(shape.view(vec![12, 0]), Ok(StridedShape::new(vec![12, 0], vec![0, 1])),);
    }

    #[test]
    fn view_simple() {
        let shape = StridedShape::new(vec![2, 3, 4, 3, 2], vec![72, 24, 6, 2, 1]);
        assert!(shape.has_simple_strides());
        assert_eq!(collect_groups(&shape), (vec![144], vec![1]));
        assert_eq!(shape.view(vec![144]), Ok(StridedShape::new(vec![144], vec![1])),);
        assert_eq!(shape.view(vec![72, 2]), Ok(StridedShape::new(vec![72, 2], vec![2, 1])),);
        assert_eq!(
            shape.view(vec![72, 2, 1, 1, 1]),
            Ok(StridedShape::new(vec![72, 2, 1, 1, 1], vec![2, 1, 1, 1, 1])),
        );
    }

    #[test]
    fn view_split() {
        let shape = StridedShape::new(vec![2, 3, 4], vec![24, 8, 1]);
        assert_eq!(collect_groups(&shape), (vec![6, 4], vec![8, 1]));
        assert_eq!(shape.view(vec![6, 4]), Ok(StridedShape::new(vec![6, 4], vec![8, 1])),);
        assert!(shape.view(vec![24]).is_err());
    }

    #[test]
    fn slice_simple() {
        let shape = StridedShape::new(vec![2, 3, 4], vec![24, 8, 1]);
        assert_eq!(
            shape.slice(1, SliceRange::new(0, 4, 2)),
            StridedShape::new(vec![2, 2, 4], vec![24, 16, 1])
        )
    }
}