1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
use num_bigint::BigInt;

use crate::{KlvmEncoder, ToKlvmError};

pub trait ToKlvm<N> {
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError>;
}

pub fn simplify_int_bytes(mut slice: &[u8]) -> &[u8] {
    while (!slice.is_empty()) && (slice[0] == 0) {
        if slice.len() > 1 && (slice[1] & 0x80 == 0x80) {
            break;
        }
        slice = &slice[1..];
    }
    slice
}

macro_rules! klvm_primitive {
    ($primitive:ty) => {
        impl<N> ToKlvm<N> for $primitive {
            fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
                let number = BigInt::from(*self);
                encoder.encode_atom(simplify_int_bytes(&number.to_signed_bytes_be()))
            }
        }
    };
}

klvm_primitive!(u8);
klvm_primitive!(i8);
klvm_primitive!(u16);
klvm_primitive!(i16);
klvm_primitive!(u32);
klvm_primitive!(i32);
klvm_primitive!(u64);
klvm_primitive!(i64);
klvm_primitive!(u128);
klvm_primitive!(i128);
klvm_primitive!(usize);
klvm_primitive!(isize);

impl<N> ToKlvm<N> for bool {
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        (if *self { 1 } else { 0 }).to_klvm(encoder)
    }
}

impl<N, T> ToKlvm<N> for &T
where
    T: ToKlvm<N>,
{
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        T::to_klvm(*self, encoder)
    }
}

impl<N, A, B> ToKlvm<N> for (A, B)
where
    A: ToKlvm<N>,
    B: ToKlvm<N>,
{
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        let first = self.0.to_klvm(encoder)?;
        let rest = self.1.to_klvm(encoder)?;
        encoder.encode_pair(first, rest)
    }
}

impl<N> ToKlvm<N> for () {
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        encoder.encode_atom(&[])
    }
}

impl<N, T> ToKlvm<N> for &[T]
where
    T: ToKlvm<N>,
{
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        let mut result = encoder.encode_atom(&[])?;
        for item in self.iter().rev() {
            let value = item.to_klvm(encoder)?;
            result = encoder.encode_pair(value, result)?;
        }
        Ok(result)
    }
}

impl<N, T, const LEN: usize> ToKlvm<N> for [T; LEN]
where
    T: ToKlvm<N>,
{
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        self.as_slice().to_klvm(encoder)
    }
}

impl<N, T> ToKlvm<N> for Vec<T>
where
    T: ToKlvm<N>,
{
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        self.as_slice().to_klvm(encoder)
    }
}

impl<N, T> ToKlvm<N> for Option<T>
where
    T: ToKlvm<N>,
{
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        match self {
            Some(value) => value.to_klvm(encoder),
            None => encoder.encode_atom(&[]),
        }
    }
}

impl<N> ToKlvm<N> for &str {
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        encoder.encode_atom(self.as_bytes())
    }
}

impl<N> ToKlvm<N> for String {
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        self.as_str().to_klvm(encoder)
    }
}

#[cfg(feature = "chik-bls")]
impl<N> ToKlvm<N> for chik_bls::PublicKey {
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        encoder.encode_atom(&self.to_bytes())
    }
}

#[cfg(feature = "chik-bls")]
impl<N> ToKlvm<N> for chik_bls::Signature {
    fn to_klvm(&self, encoder: &mut impl KlvmEncoder<Node = N>) -> Result<N, ToKlvmError> {
        encoder.encode_atom(&self.to_bytes())
    }
}

#[cfg(test)]
mod tests {
    use hex::ToHex;
    use klvmr::{serde::node_to_bytes, Allocator, NodePtr};

    use super::*;

    fn encode<T>(a: &mut Allocator, value: T) -> Result<String, ToKlvmError>
    where
        T: ToKlvm<NodePtr>,
    {
        let actual = value.to_klvm(a).unwrap();
        let actual_bytes = node_to_bytes(a, actual).unwrap();
        Ok(actual_bytes.encode_hex())
    }

    #[test]
    fn test_nodeptr() {
        let a = &mut Allocator::new();
        let ptr = a.one();
        assert_eq!(ptr.to_klvm(a).unwrap(), ptr);
    }

    #[test]
    fn test_primitives() {
        let a = &mut Allocator::new();
        assert_eq!(encode(a, 0u8), Ok("80".to_owned()));
        assert_eq!(encode(a, 0i8), Ok("80".to_owned()));
        assert_eq!(encode(a, 5u8), Ok("05".to_owned()));
        assert_eq!(encode(a, 5u32), Ok("05".to_owned()));
        assert_eq!(encode(a, 5i32), Ok("05".to_owned()));
        assert_eq!(encode(a, -27i32), Ok("81e5".to_owned()));
        assert_eq!(encode(a, -0), Ok("80".to_owned()));
        assert_eq!(encode(a, -128i8), Ok("8180".to_owned()));
    }

    #[test]
    fn test_bool() {
        let a = &mut Allocator::new();
        assert_eq!(encode(a, true), Ok("01".to_owned()));
        assert_eq!(encode(a, false), Ok("80".to_owned()));
    }

    #[test]
    fn test_reference() {
        let a = &mut Allocator::new();
        assert_eq!(encode(a, [1, 2, 3]), encode(a, [1, 2, 3]));
        assert_eq!(encode(a, Some(42)), encode(a, Some(42)));
        assert_eq!(encode(a, Some(&42)), encode(a, Some(42)));
        assert_eq!(encode(a, Some(&42)), encode(a, Some(42)));
    }

    #[test]
    fn test_pair() {
        let a = &mut Allocator::new();
        assert_eq!(encode(a, (5, 2)), Ok("ff0502".to_owned()));
        assert_eq!(
            encode(a, (-72, (90121, ()))),
            Ok("ff81b8ff8301600980".to_owned())
        );
        assert_eq!(
            encode(a, (((), ((), ((), (((), ((), ((), ()))), ())))), ())),
            Ok("ffff80ff80ff80ffff80ff80ff80808080".to_owned())
        );
    }

    #[test]
    fn test_nil() {
        let a = &mut Allocator::new();
        assert_eq!(encode(a, ()), Ok("80".to_owned()));
    }

    #[test]
    fn test_slice() {
        let a = &mut Allocator::new();
        assert_eq!(
            encode(a, [1, 2, 3, 4].as_slice()),
            Ok("ff01ff02ff03ff0480".to_owned())
        );
        assert_eq!(encode(a, [0; 0].as_slice()), Ok("80".to_owned()));
    }

    #[test]
    fn test_array() {
        let a = &mut Allocator::new();
        assert_eq!(encode(a, [1, 2, 3, 4]), Ok("ff01ff02ff03ff0480".to_owned()));
        assert_eq!(encode(a, [0; 0]), Ok("80".to_owned()));
    }

    #[test]
    fn test_vec() {
        let a = &mut Allocator::new();
        assert_eq!(
            encode(a, vec![1, 2, 3, 4]),
            Ok("ff01ff02ff03ff0480".to_owned())
        );
        assert_eq!(encode(a, vec![0; 0]), Ok("80".to_owned()));
    }

    #[test]
    fn test_option() {
        let a = &mut Allocator::new();
        assert_eq!(encode(a, Some("hello")), Ok("8568656c6c6f".to_owned()));
        assert_eq!(encode(a, None::<&str>), Ok("80".to_owned()));
        assert_eq!(encode(a, Some("")), Ok("80".to_owned()));
    }

    #[test]
    fn test_str() {
        let a = &mut Allocator::new();
        assert_eq!(encode(a, "hello"), Ok("8568656c6c6f".to_owned()));
        assert_eq!(encode(a, ""), Ok("80".to_owned()));
    }

    #[test]
    fn test_string() {
        let a = &mut Allocator::new();
        assert_eq!(
            encode(a, "hello".to_string()),
            Ok("8568656c6c6f".to_owned())
        );
        assert_eq!(encode(a, "".to_string()), Ok("80".to_owned()));
    }

    #[cfg(feature = "chik-bls")]
    #[test]
    fn test_public_key() {
        use chik_bls::PublicKey;
        use hex_literal::hex;

        let a = &mut Allocator::new();

        let bytes = hex!(
            "
            b8f7dd239557ff8c49d338f89ac1a258a863fa52cd0a502e
            3aaae4b6738ba39ac8d982215aa3fa16bc5f8cb7e44b954d
            "
        );
        assert_eq!(
            encode(a, PublicKey::from_bytes(&bytes).unwrap()),
            Ok("b0b8f7dd239557ff8c49d338f89ac1a258a863fa52cd0a502e3aaae4b6738ba39ac8d982215aa3fa16bc5f8cb7e44b954d".to_string())
        );
    }

    #[cfg(feature = "chik-bls")]
    #[test]
    fn test_signature() {
        use chik_bls::Signature;
        use hex_literal::hex;

        let a = &mut Allocator::new();

        let bytes = hex!(
            "
            a3994dc9c0ef41a903d3335f0afe42ba16c88e7881706798492da4a1653cd10c
            69c841eeb56f44ae005e2bad27fb7ebb16ce8bbfbd708ea91dd4ff24f030497b
            50e694a8270eccd07dbc206b8ffe0c34a9ea81291785299fae8206a1e1bbc1d1
            "
        );
        assert_eq!(
            encode(a, Signature::from_bytes(&bytes).unwrap()),
            Ok("c060a3994dc9c0ef41a903d3335f0afe42ba16c88e7881706798492da4a1653cd10c69c841eeb56f44ae005e2bad27fb7ebb16ce8bbfbd708ea91dd4ff24f030497b50e694a8270eccd07dbc206b8ffe0c34a9ea81291785299fae8206a1e1bbc1d1".to_string())
        );
    }
}