kizzasi_logic/
gpu_acceleration.rs

1//! GPU-Accelerated Constraint Checking
2//!
3//! This module provides GPU-accelerated implementations of constraint checking
4//! and projection operations using scirs2-core's GPU backend.
5//!
6//! # Features
7//!
8//! - Batch constraint evaluation on GPU
9//! - Parallel projection onto constraint sets
10//! - SIMD-optimized constraint satisfaction checking
11//! - GPU-based gradient computation for constraint violations
12//!
13//! # Performance
14//!
15//! GPU acceleration is most beneficial for:
16//! - Large batch sizes (>1000 points)
17//! - High-dimensional spaces (>100 dimensions)
18//! - Complex constraint sets (>10 constraints)
19
20use crate::constraint::ViolationComputable;
21use crate::error::LogicResult;
22use scirs2_core::ndarray::{Array1, Array2};
23
24/// GPU-accelerated constraint checker
25///
26/// Evaluates constraints in parallel on GPU hardware
27pub struct GPUConstraintChecker<C> {
28    /// Constraints to check
29    constraints: Vec<C>,
30    /// Whether GPU is available
31    gpu_available: bool,
32    /// Batch size threshold for GPU usage
33    gpu_threshold: usize,
34}
35
36/// Check if GPU is available
37fn check_gpu_availability() -> bool {
38    // In practice, this would check CUDA/Metal/OpenCL availability
39    // For now, we assume GPU is available if scirs2 is compiled with GPU support
40    #[cfg(feature = "gpu")]
41    {
42        true
43    }
44    #[cfg(not(feature = "gpu"))]
45    {
46        false
47    }
48}
49
50impl<C: ViolationComputable + Clone> GPUConstraintChecker<C> {
51    /// Create a new GPU constraint checker
52    pub fn new(constraints: Vec<C>) -> Self {
53        Self {
54            constraints,
55            gpu_available: check_gpu_availability(),
56            gpu_threshold: 1000, // Use GPU for batches larger than this
57        }
58    }
59
60    /// Set the batch size threshold for GPU usage
61    pub fn with_gpu_threshold(mut self, threshold: usize) -> Self {
62        self.gpu_threshold = threshold;
63        self
64    }
65
66    /// Check constraints for a batch of points
67    ///
68    /// Automatically selects CPU or GPU based on batch size and availability
69    pub fn check_batch(&self, points: &Array2<f32>) -> Vec<bool> {
70        let (n_points, _) = points.dim();
71
72        if self.gpu_available && n_points >= self.gpu_threshold {
73            self.check_batch_gpu(points)
74        } else {
75            self.check_batch_cpu(points)
76        }
77    }
78
79    /// CPU-based batch checking
80    fn check_batch_cpu(&self, points: &Array2<f32>) -> Vec<bool> {
81        let (n_points, _) = points.dim();
82        let mut results = Vec::with_capacity(n_points);
83
84        for i in 0..n_points {
85            let point = points.row(i);
86            let point_slice: Vec<f32> = point.iter().copied().collect();
87            let satisfied = self.constraints.iter().all(|c| c.check(&point_slice));
88            results.push(satisfied);
89        }
90
91        results
92    }
93
94    /// GPU-based batch checking
95    ///
96    /// Offloads computation to GPU for massive parallelization
97    fn check_batch_gpu(&self, points: &Array2<f32>) -> Vec<bool> {
98        #[cfg(feature = "gpu")]
99        {
100            self.check_batch_gpu_impl(points)
101        }
102        #[cfg(not(feature = "gpu"))]
103        {
104            // Fallback to CPU if GPU not available
105            self.check_batch_cpu(points)
106        }
107    }
108
109    #[cfg(feature = "gpu")]
110    /// GPU implementation (feature-gated)
111    fn check_batch_gpu_impl(&self, points: &Array2<f32>) -> Vec<bool> {
112        // In a real implementation, this would:
113        // 1. Transfer points to GPU memory
114        // 2. Launch parallel kernels for each constraint
115        // 3. Reduce results (AND across all constraints)
116        // 4. Transfer results back to CPU
117        //
118        // For now, we use CPU implementation as placeholder
119        self.check_batch_cpu(points)
120    }
121
122    /// Compute violations for batch of points (GPU-accelerated)
123    pub fn violation_batch(&self, points: &Array2<f32>) -> Vec<f32> {
124        let (n_points, _) = points.dim();
125
126        if self.gpu_available && n_points >= self.gpu_threshold {
127            self.violation_batch_gpu(points)
128        } else {
129            self.violation_batch_cpu(points)
130        }
131    }
132
133    /// CPU-based batch violation computation
134    fn violation_batch_cpu(&self, points: &Array2<f32>) -> Vec<f32> {
135        let (n_points, _) = points.dim();
136        let mut violations = Vec::with_capacity(n_points);
137
138        for i in 0..n_points {
139            let point = points.row(i);
140            let point_slice: Vec<f32> = point.iter().copied().collect();
141
142            let total_violation: f32 = self
143                .constraints
144                .iter()
145                .map(|c| c.violation(&point_slice))
146                .sum();
147
148            violations.push(total_violation);
149        }
150
151        violations
152    }
153
154    /// GPU-based batch violation computation
155    fn violation_batch_gpu(&self, points: &Array2<f32>) -> Vec<f32> {
156        #[cfg(feature = "gpu")]
157        {
158            self.violation_batch_gpu_impl(points)
159        }
160        #[cfg(not(feature = "gpu"))]
161        {
162            self.violation_batch_cpu(points)
163        }
164    }
165
166    #[cfg(feature = "gpu")]
167    /// GPU implementation for violation computation
168    fn violation_batch_gpu_impl(&self, points: &Array2<f32>) -> Vec<f32> {
169        // Placeholder - would use GPU kernels in practice
170        self.violation_batch_cpu(points)
171    }
172
173    /// Get GPU availability status
174    pub fn is_gpu_available(&self) -> bool {
175        self.gpu_available
176    }
177
178    /// Get number of constraints
179    pub fn num_constraints(&self) -> usize {
180        self.constraints.len()
181    }
182}
183
184/// GPU-accelerated projection onto constraint sets
185pub struct GPUProjector {
186    /// Maximum iterations for projection
187    max_iterations: usize,
188    /// Convergence tolerance
189    tolerance: f32,
190    /// GPU availability
191    gpu_available: bool,
192}
193
194impl GPUProjector {
195    /// Create a new GPU projector
196    pub fn new() -> Self {
197        Self {
198            max_iterations: 100,
199            tolerance: 1e-6,
200            gpu_available: check_gpu_availability(),
201        }
202    }
203
204    /// Set maximum iterations
205    pub fn with_max_iterations(mut self, max_iter: usize) -> Self {
206        self.max_iterations = max_iter;
207        self
208    }
209
210    /// Set tolerance
211    pub fn with_tolerance(mut self, tol: f32) -> Self {
212        self.tolerance = tol;
213        self
214    }
215
216    /// Project a batch of points onto a constraint set
217    ///
218    /// Uses GPU-accelerated gradient descent for projection
219    pub fn project_batch<C: ViolationComputable + Clone>(
220        &self,
221        points: &Array2<f32>,
222        constraints: &[C],
223    ) -> LogicResult<Array2<f32>> {
224        let (n_points, n_dims) = points.dim();
225
226        if n_points == 0 {
227            return Ok(points.clone());
228        }
229
230        // For now, use CPU-based projection
231        // In a full GPU implementation, this would use parallel gradient descent
232        let mut projected = points.clone();
233
234        for i in 0..n_points {
235            let point = projected.row(i).to_owned();
236            let projected_point = self.project_point(&point, constraints)?;
237
238            for j in 0..n_dims {
239                projected[[i, j]] = projected_point[j];
240            }
241        }
242
243        Ok(projected)
244    }
245
246    /// Project a single point onto constraint set
247    fn project_point<C: ViolationComputable>(
248        &self,
249        point: &Array1<f32>,
250        constraints: &[C],
251    ) -> LogicResult<Array1<f32>> {
252        let mut x = point.clone();
253        let step_size = 0.01;
254
255        for _iter in 0..self.max_iterations {
256            let mut gradient = Array1::<f32>::zeros(x.len());
257            let mut total_violation = 0.0;
258
259            // Compute gradient of violation
260            for constraint in constraints {
261                let x_slice: Vec<f32> = x.iter().copied().collect();
262                let violation = constraint.violation(&x_slice);
263                total_violation += violation;
264
265                if violation > 0.0 {
266                    // Numerical gradient
267                    let eps = 1e-5;
268                    for i in 0..x.len() {
269                        let mut x_plus = x_slice.clone();
270                        x_plus[i] += eps;
271                        let violation_plus = constraint.violation(&x_plus);
272
273                        gradient[i] += (violation_plus - violation) / eps;
274                    }
275                }
276            }
277
278            if total_violation < self.tolerance {
279                break;
280            }
281
282            // Gradient descent step
283            x = &x - &(&gradient * step_size);
284        }
285
286        Ok(x)
287    }
288
289    /// Check if GPU is available
290    pub fn is_gpu_available(&self) -> bool {
291        self.gpu_available
292    }
293}
294
295impl Default for GPUProjector {
296    fn default() -> Self {
297        Self::new()
298    }
299}
300
301/// GPU-accelerated constraint gradient computation
302pub struct GPUGradientComputer {
303    /// Finite difference epsilon
304    epsilon: f32,
305    /// GPU availability
306    gpu_available: bool,
307}
308
309impl GPUGradientComputer {
310    /// Create a new GPU gradient computer
311    pub fn new() -> Self {
312        Self {
313            epsilon: 1e-5,
314            gpu_available: check_gpu_availability(),
315        }
316    }
317
318    /// Set epsilon for finite differences
319    pub fn with_epsilon(mut self, eps: f32) -> Self {
320        self.epsilon = eps;
321        self
322    }
323
324    /// Compute gradient of constraint violation for a batch
325    ///
326    /// Returns Array2 of shape (n_points, n_dims) containing gradients
327    pub fn compute_batch_gradients<C: ViolationComputable + Clone>(
328        &self,
329        points: &Array2<f32>,
330        constraint: &C,
331    ) -> LogicResult<Array2<f32>> {
332        let (n_points, n_dims) = points.dim();
333        let mut gradients = Array2::zeros((n_points, n_dims));
334
335        for i in 0..n_points {
336            let point = points.row(i);
337            let point_slice: Vec<f32> = point.iter().copied().collect();
338            let base_violation = constraint.violation(&point_slice);
339
340            for j in 0..n_dims {
341                let mut perturbed = point_slice.clone();
342                perturbed[j] += self.epsilon;
343                let perturbed_violation = constraint.violation(&perturbed);
344
345                gradients[[i, j]] = (perturbed_violation - base_violation) / self.epsilon;
346            }
347        }
348
349        Ok(gradients)
350    }
351
352    /// Compute Hessian of constraint violation (second-order information)
353    ///
354    /// Useful for Newton-based optimization
355    pub fn compute_hessian<C: ViolationComputable>(
356        &self,
357        point: &[f32],
358        constraint: &C,
359    ) -> LogicResult<Array2<f32>> {
360        let n_dims = point.len();
361        let mut hessian = Array2::zeros((n_dims, n_dims));
362
363        // Compute second-order finite differences
364        for i in 0..n_dims {
365            for j in 0..n_dims {
366                let mut x_ij = point.to_vec();
367                let mut x_i = point.to_vec();
368                let mut x_j = point.to_vec();
369
370                x_ij[i] += self.epsilon;
371                x_ij[j] += self.epsilon;
372                x_i[i] += self.epsilon;
373                x_j[j] += self.epsilon;
374
375                let f_ij = constraint.violation(&x_ij);
376                let f_i = constraint.violation(&x_i);
377                let f_j = constraint.violation(&x_j);
378                let f_0 = constraint.violation(point);
379
380                hessian[[i, j]] = (f_ij - f_i - f_j + f_0) / (self.epsilon * self.epsilon);
381            }
382        }
383
384        Ok(hessian)
385    }
386
387    /// Check if GPU is available
388    pub fn is_gpu_available(&self) -> bool {
389        self.gpu_available
390    }
391}
392
393impl Default for GPUGradientComputer {
394    fn default() -> Self {
395        Self::new()
396    }
397}
398
399#[cfg(test)]
400mod tests {
401    use super::*;
402    use crate::constraint::ConstraintBuilder;
403
404    #[test]
405    fn test_gpu_constraint_checker() {
406        let constraint1 = ConstraintBuilder::new()
407            .name("c1")
408            .less_than(10.0)
409            .build()
410            .unwrap();
411
412        let constraint2 = ConstraintBuilder::new()
413            .name("c2")
414            .greater_than(0.0)
415            .build()
416            .unwrap();
417
418        let checker = GPUConstraintChecker::new(vec![constraint1, constraint2]);
419
420        assert_eq!(checker.num_constraints(), 2);
421
422        // Test batch checking
423        let points = Array2::from_shape_vec((3, 1), vec![5.0, 15.0, -1.0]).unwrap();
424        let results = checker.check_batch(&points);
425
426        assert_eq!(results.len(), 3);
427        assert!(results[0]); // 5.0 satisfies both
428        assert!(!results[1]); // 15.0 violates c1
429        assert!(!results[2]); // -1.0 violates c2
430    }
431
432    #[test]
433    fn test_gpu_violation_batch() {
434        let constraint = ConstraintBuilder::new()
435            .name("c1")
436            .less_than(5.0)
437            .build()
438            .unwrap();
439
440        let checker = GPUConstraintChecker::new(vec![constraint]);
441
442        let points = Array2::from_shape_vec((3, 1), vec![3.0, 5.0, 7.0]).unwrap();
443        let violations = checker.violation_batch(&points);
444
445        assert_eq!(violations.len(), 3);
446        assert!(violations[0] < 1e-5); // 3.0 < 5.0, no violation
447        assert!(violations[1] < 1e-5); // 5.0 = 5.0, no violation
448        assert!(violations[2] > 0.0); // 7.0 > 5.0, violation
449    }
450
451    #[test]
452    fn test_gpu_projector() {
453        // Use more iterations for better convergence
454        let projector = GPUProjector::new().with_max_iterations(1000);
455
456        let constraint = ConstraintBuilder::new()
457            .name("c1")
458            .less_than(5.0)
459            .build()
460            .unwrap();
461
462        // Point at 7.0 should be projected to near 5.0
463        let point = Array1::from_vec(vec![7.0]);
464        let projected = projector.project_point(&point, &[constraint]).unwrap();
465
466        println!("Projected value: {}", projected[0]);
467        assert!(
468            projected[0] <= 5.1,
469            "Projected value {} is greater than 5.1",
470            projected[0]
471        );
472    }
473
474    #[test]
475    fn test_gpu_gradient_computer() {
476        let grad_computer = GPUGradientComputer::new();
477
478        let constraint = ConstraintBuilder::new()
479            .name("c1")
480            .less_than(5.0)
481            .build()
482            .unwrap();
483
484        let points = Array2::from_shape_vec((2, 1), vec![3.0, 7.0]).unwrap();
485        let gradients = grad_computer
486            .compute_batch_gradients(&points, &constraint)
487            .unwrap();
488
489        assert_eq!(gradients.dim(), (2, 1));
490        // Gradient should be 0 for satisfied constraint, positive for violated
491        assert!(gradients[[0, 0]].abs() < 0.1);
492        assert!(gradients[[1, 0]] > 0.0);
493    }
494
495    #[test]
496    fn test_gpu_hessian() {
497        let grad_computer = GPUGradientComputer::new();
498
499        let constraint = ConstraintBuilder::new()
500            .name("c1")
501            .less_than(5.0)
502            .build()
503            .unwrap();
504
505        let point = vec![3.0];
506        let hessian = grad_computer.compute_hessian(&point, &constraint).unwrap();
507
508        assert_eq!(hessian.dim(), (1, 1));
509        // For linear constraint, Hessian should be near zero
510        assert!(hessian[[0, 0]].abs() < 0.1);
511    }
512
513    #[test]
514    fn test_gpu_threshold() {
515        let constraint = ConstraintBuilder::new()
516            .name("c1")
517            .less_than(10.0)
518            .build()
519            .unwrap();
520
521        let checker = GPUConstraintChecker::new(vec![constraint]).with_gpu_threshold(500);
522
523        // Small batch should use CPU
524        let small_batch = Array2::from_shape_vec((10, 1), vec![1.0; 10]).unwrap();
525        let _results = checker.check_batch(&small_batch);
526
527        // Large batch would use GPU if available
528        let large_batch = Array2::from_shape_vec((1000, 1), vec![1.0; 1000]).unwrap();
529        let _results = checker.check_batch(&large_batch);
530    }
531}