1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
//! A [`crate::sharded::Cache`] uses the same basic file-based second
//! chance strategy as a [`crate::plain::Cache`]. However, while the
//! simple plain cache is well suited to small caches (down to 2-3
//! files, and up maybe one hundred), this sharded version can scale
//! nearly arbitrarily high: each shard should have fewer than one
//! hundred or so files, but there may be arbitrarily many shards (up
//! to filesystem limits, since each shard is a subdirectory).
//!
//! A sharded cache directory consists of shard subdirectories (with
//! name equal to the shard index printed as `%04x`), each of which
//! contains the cached files for that shard, under their `key` name,
//! and an optional `.kismet_temp` subdirectory for temporary files.
//!
//! This module is useful for lower level usage; in most cases, the
//! [`crate::Cache`] is more convenient and just as efficient. In
//! particular, a `crate::sharded::Cache` *does not* invoke
//! [`std::fs::File::sync_all`] or [`std::fs::File::sync_data`]: the
//! caller should sync files before letting Kismet persist them in a
//! directory, if necessary.
//!
//! The cache's contents will grow past its stated capacity, but
//! should rarely reach more than twice that capacity, especially
//! when the shard capacity is less than 128 files.
use std::borrow::Cow;
use std::fs::File;
use std::io::Result;
use std::path::Path;
use std::path::PathBuf;
use std::sync::atomic::AtomicU8;
use std::sync::atomic::Ordering::Relaxed;
use std::sync::Arc;
use crate::cache_dir::CacheDir;
use crate::multiplicative_hash::MultiplicativeHash;
use crate::trigger::PeriodicTrigger;
use crate::Key;
use crate::KISMET_TEMPORARY_SUBDIRECTORY as TEMP_SUBDIR;
/// We will aim to trigger maintenance at least `MAINTENANCE_SCALE`
/// times per total capacity inserts or updates, and at least once per
/// shard capacity inserts or updates.
const MAINTENANCE_SCALE: usize = 2;
/// These mixers must be the same for all processes that access the
/// same sharded cache directory. That's why we derive the parameters
/// in a const function.
const PRIMARY_MIXER: MultiplicativeHash =
MultiplicativeHash::new_keyed(b"kismet: primary shard mixer");
const SECONDARY_MIXER: MultiplicativeHash =
MultiplicativeHash::new_keyed(b"kismet: secondary shard mixer");
/// A sharded cache is a hash-sharded directory of cache
/// subdirectories. Each subdirectory is managed as an
/// independent second chance cache directory.
#[derive(Clone, Debug)]
pub struct Cache {
// The current load (number of files) estimate for each shard.
load_estimates: Arc<[AtomicU8]>,
// The parent directory for each shard (cache subdirectory).
base_dir: PathBuf,
// Triggers periodic second chance maintenance. It is set to the
// least (most frequent) period between ~1/2 the total capacity,
// and each shard's capacity. Whenever the `trigger` fires, we
// will maintain two different shards: the one we just updated,
// and another randomly chosen shard.
trigger: PeriodicTrigger,
// Number of shards in the cache, at least 2.
num_shards: usize,
// Capacity for each shard (rounded up to an integer), at least 1.
shard_capacity: usize,
}
/// Converts a shard id to a subdirectory name.
///
/// We use a dot prefix because the resulting subdirectory names are
/// guaranteed not to collide with "plain" cache filenames. This
/// means we can switch between the sharded and plain (unsharded)
/// strategy for the same directory, without any chance of
/// misinterpreted file name.
#[inline]
fn format_id(shard: usize) -> String {
format!(".kismet_{:04x}", shard)
}
/// We create short-lived Shard objects whenever we want to work with
/// a given shard of the sharded cache dir.
struct Shard {
id: usize,
shard_dir: PathBuf,
trigger: PeriodicTrigger,
capacity: usize,
}
impl Shard {
/// Returns a shard object for a new shard `id`.
fn replace_shard(self, id: usize) -> Shard {
let mut shard_dir = self.shard_dir;
shard_dir.pop();
shard_dir.push(&format_id(id));
Shard {
id,
shard_dir,
trigger: self.trigger,
capacity: self.capacity,
}
}
/// Returns whether the file `name` exists in this shard.
fn file_exists(&mut self, name: &str) -> bool {
self.shard_dir.push(name);
let result = std::fs::metadata(&self.shard_dir);
self.shard_dir.pop();
result.is_ok()
}
}
impl CacheDir for Shard {
#[inline]
fn temp_dir(&self) -> Cow<Path> {
let mut dir = self.shard_dir.clone();
dir.push(TEMP_SUBDIR);
Cow::from(dir)
}
#[inline]
fn base_dir(&self) -> Cow<Path> {
Cow::from(&self.shard_dir)
}
#[inline]
fn trigger(&self) -> &PeriodicTrigger {
&self.trigger
}
#[inline]
fn capacity(&self) -> usize {
self.capacity
}
}
impl Cache {
/// Returns a new cache for approximately `total_capacity` files,
/// stores in `num_shards` subdirectories of `base_dir`.
pub fn new(base_dir: PathBuf, mut num_shards: usize, mut total_capacity: usize) -> Cache {
// We assume at least two shards.
if num_shards < 2 {
num_shards = 2;
}
if total_capacity < num_shards {
total_capacity = num_shards;
}
let mut load_estimates = Vec::with_capacity(num_shards);
load_estimates.resize_with(num_shards, || AtomicU8::new(0));
let shard_capacity =
(total_capacity / num_shards) + ((total_capacity % num_shards) != 0) as usize;
let trigger =
PeriodicTrigger::new(shard_capacity.min(total_capacity / MAINTENANCE_SCALE) as u64);
Cache {
load_estimates: load_estimates.into_boxed_slice().into(),
base_dir,
trigger,
num_shards,
shard_capacity,
}
}
/// Returns a random shard id.
fn random_shard_id(&self) -> usize {
use rand::Rng;
rand::thread_rng().gen_range(0..self.num_shards)
}
/// Given shard ids `base` and `other`, returns a new shard id for
/// `other` such that `base` and `other` do not collide.
fn other_shard_id(&self, base: usize, mut other: usize) -> usize {
if base != other {
return other;
}
other += 1;
if other < self.num_shards {
other
} else {
0
}
}
/// Returns the two shard ids for `key`.
fn shard_ids(&self, key: Key) -> (usize, usize) {
// We can't assume the hash is well distributed, so mix it
// around a bit with a multiplicative hash.
let h1 = PRIMARY_MIXER.map(key.hash, self.num_shards);
let h2 = SECONDARY_MIXER.map(key.secondary_hash, self.num_shards);
// We do not apply a 2-left strategy because our load
// estimates can saturate. When that happens, we want to
// revert to sharding based on `key.hash`.
(h1, self.other_shard_id(h1, h2))
}
/// Reorders two shard ids to return the least loaded first.
fn sort_by_load(&self, (h1, h2): (usize, usize)) -> (usize, usize) {
let load1 = self.load_estimates[h1].load(Relaxed) as usize;
let load2 = self.load_estimates[h2].load(Relaxed) as usize;
// Clamp loads at the shard capacity: when both shards are
// over the capacity, they're equally overloaded. This also
// lets us revert to only using `key.hash` when at capacity.
let capacity = self.shard_capacity;
if load1.clamp(0, capacity) <= load2.clamp(0, capacity) {
(h1, h2)
} else {
(h2, h1)
}
}
/// Returns a shard object for the `shard_id`.
fn shard(&self, shard_id: usize) -> Shard {
let mut dir = self.base_dir.clone();
dir.push(&format_id(shard_id));
Shard {
id: shard_id,
shard_dir: dir,
trigger: self.trigger,
capacity: self.shard_capacity,
}
}
/// Returns a read-only file for `key` in the shard cache
/// directory if it exists, or None if there is no such file.
/// Fails with `ErrorKind::InvalidInput` if `key.name` is invalid
/// (empty, or starts with a dot or a forward or back slash).
///
/// Implicitly "touches" the cached file if it exists.
pub fn get(&self, key: Key) -> Result<Option<File>> {
let (h1, h2) = self.shard_ids(key);
let shard = self.shard(h1);
if let Some(file) = shard.get(key.name)? {
Ok(Some(file))
} else {
shard.replace_shard(h2).get(key.name)
}
}
/// Returns a temporary directory suitable for temporary files
/// that will be published to the shard cache directory.
///
/// When this temporary file will be published at a known `Key`,
/// populate `key` for improved behaviour.
pub fn temp_dir(&self, key: Option<Key>) -> Result<Cow<Path>> {
let shard_id = match key {
Some(key) => self.sort_by_load(self.shard_ids(key)).0,
None => self.random_shard_id(),
};
let shard = self.shard(shard_id);
if self.trigger.event() {
shard.cleanup_temp_directory()?;
}
Ok(Cow::from(shard.ensure_temp_dir()?.into_owned()))
}
/// Updates the load estimate for `shard_id` with the value
/// returned by `CacheDir::{set,put}`.
fn update_estimate(&self, shard_id: usize, update: Option<u64>) {
let target = &self.load_estimates[shard_id];
match update {
// If we have an updated estimate, overwrite what we have,
// and take the newly added file into account.
Some(remaining) => {
let update = remaining.clamp(0, u8::MAX as u64 - 1) as u8;
target.store(update + 1, Relaxed);
}
// Otherwise, increment by one with saturation.
None => {
let _ = target.fetch_update(Relaxed, Relaxed, |i| {
if i < u8::MAX {
Some(i + 1)
} else {
None
}
});
}
};
}
/// Performs a second chance maintenance on `shard`.
fn force_maintain_shard(&self, shard: Shard) -> Result<()> {
let update = shard.maintain()?.clamp(0, u8::MAX as u64) as u8;
self.load_estimates[shard.id].store(update, Relaxed);
Ok(())
}
/// Performs a second chance maintenance on a randomly chosen shard
/// that is not `base`.
fn maintain_random_other_shard(&self, base: Shard) -> Result<()> {
let shard_id = self.other_shard_id(base.id, self.random_shard_id());
self.force_maintain_shard(base.replace_shard(shard_id))
}
/// Inserts or overwrites the file at `value` as `key` in the
/// sharded cache directory. There may be two entries for the
/// same key with concurrent `set` or `put` calls. Fails with
/// `ErrorKind::InvalidInput` if `key.name` is invalid (empty, or
/// starts with a dot or a forward or back slash).
///
/// Always consumes the file at `value` on success; may consume it
/// on error.
pub fn set(&self, key: Key, value: &Path) -> Result<()> {
let (h1, h2) = self.sort_by_load(self.shard_ids(key));
let mut shard = self.shard(h2);
// If the file does not already exist in the secondary shard,
// use the primary.
if !shard.file_exists(key.name) {
shard = shard.replace_shard(h1);
}
let update = shard.set(key.name, value)?;
self.update_estimate(h1, update);
// If we performed maintenance on this shard, also maintain
// a second random shard: writes might be concentrated on a
// few shard, but we can still spread the love, if only to
// clean up temporary files.
if update.is_some() {
self.maintain_random_other_shard(shard)?;
} else if self.load_estimates[h1].load(Relaxed) as usize / 2 > self.shard_capacity {
// Otherwise, we can also force a maintenance for this
// shard if we're pretty sure it has grown much too big.
self.force_maintain_shard(shard)?;
}
Ok(())
}
/// Inserts the file at `value` as `key` in the cache directory if
/// there is no such cached entry already, or touches the cached
/// file if it already exists. There may be two entries for the
/// same key with concurrent `set` or `put` calls. Fails with
/// `ErrorKind::InvalidInput` if `key.name` is invalid (empty, or
/// starts with a dot or a forward or back slash).
///
/// Always consumes the file at `value` on success; may consume it
/// on error.
pub fn put(&self, key: Key, value: &Path) -> Result<()> {
let (h1, h2) = self.sort_by_load(self.shard_ids(key));
let mut shard = self.shard(h2);
// If the file does not already exist in the secondary shard,
// use the primary.
if !shard.file_exists(key.name) {
shard = shard.replace_shard(h1);
}
let update = shard.put(key.name, value)?;
self.update_estimate(h1, update);
// If we performed maintenance on this shard, also maintain
// a second random shard.
if update.is_some() {
self.maintain_random_other_shard(shard)?;
} else if self.load_estimates[h1].load(Relaxed) as usize / 2 > self.shard_capacity {
self.force_maintain_shard(shard)?;
}
Ok(())
}
/// Marks the cached file `key` as newly used, if it exists.
/// Fails with `ErrorKind::InvalidInput` if `key.name` is invalid
/// (empty, or starts with a dot or a forward or back slash).
///
/// Returns whether a file for `key` exists in the cache.
pub fn touch(&self, key: Key) -> Result<bool> {
let (h1, h2) = self.shard_ids(key);
let shard = self.shard(h1);
if shard.touch(key.name)? {
return Ok(true);
}
shard.replace_shard(h2).touch(key.name)
}
}
/// Put 200 files in a 3x3-file cache. We should find at least 9, but
/// at most 18 (2x the capacity), and their contents should match.
#[test]
fn smoke_test() {
use tempfile::NamedTempFile;
use test_dir::{DirBuilder, TestDir};
// The payload for file `i` is `PAYLOAD_MULTIPLIER * i`.
const PAYLOAD_MULTIPLIER: usize = 113;
let temp = TestDir::temp();
let cache = Cache::new(temp.path("."), 3, 9);
for i in 0..200 {
let name = format!("{}", i);
let temp_dir = cache.temp_dir(None).expect("temp_dir must succeed");
let tmp = NamedTempFile::new_in(temp_dir).expect("new temp file must succeed");
std::fs::write(tmp.path(), format!("{}", PAYLOAD_MULTIPLIER * i))
.expect("write must succeed");
// It shouldn't matter if we PUT or SET.
if (i % 2) != 0 {
cache
.put(Key::new(&name, i as u64, i as u64 + 42), tmp.path())
.expect("put must succeed");
} else {
cache
.set(Key::new(&name, i as u64, i as u64 + 42), tmp.path())
.expect("set must succeed");
}
}
let present: usize = (0..200)
.map(|i| {
let name = format!("{}", i);
match cache
.get(Key::new(&name, i as u64, i as u64 + 42))
.expect("get must succeed")
{
Some(mut file) => {
use std::io::Read;
let mut buf = Vec::new();
file.read_to_end(&mut buf).expect("read must succeed");
assert_eq!(buf, format!("{}", PAYLOAD_MULTIPLIER * i).into_bytes());
1
}
None => 0,
}
})
.sum();
assert!(present >= 9);
assert!(present <= 18);
}
/// Publish a file, make sure we can read it, then overwrite, and
/// confirm that the new contents are visible.
#[test]
fn test_set() {
use std::io::{Read, Write};
use tempfile::NamedTempFile;
use test_dir::{DirBuilder, TestDir};
let temp = TestDir::temp();
let cache = Cache::new(temp.path("."), 0, 0);
{
let tmp = NamedTempFile::new_in(cache.temp_dir(None).expect("temp_dir must succeed"))
.expect("new temp file must succeed");
tmp.as_file().write_all(b"v1").expect("write must succeed");
cache
.set(Key::new("entry", 1, 2), tmp.path())
.expect("initial set must succeed");
}
{
let mut cached = cache
.get(Key::new("entry", 1, 2))
.expect("must succeed")
.expect("must be found");
let mut dst = Vec::new();
cached.read_to_end(&mut dst).expect("read must succeed");
assert_eq!(&dst, b"v1");
}
// Now overwrite; it should take.
{
let tmp = NamedTempFile::new_in(cache.temp_dir(None).expect("temp_dir must succeed"))
.expect("new temp file must succeed");
tmp.as_file().write_all(b"v2").expect("write must succeed");
cache
.set(Key::new("entry", 1, 2), tmp.path())
.expect("overwrite must succeed");
}
{
let mut cached = cache
.get(Key::new("entry", 1, 2))
.expect("must succeed")
.expect("must be found");
let mut dst = Vec::new();
cached.read_to_end(&mut dst).expect("read must succeed");
assert_eq!(&dst, b"v2");
}
}
/// Publish a file, fail to put a new one with different data, and
/// confirm that the old contents are visible.
#[test]
fn test_put() {
use std::io::{Read, Write};
use tempfile::NamedTempFile;
use test_dir::{DirBuilder, TestDir};
let temp = TestDir::temp();
let cache = Cache::new(temp.path("."), 0, 0);
{
let tmp = NamedTempFile::new_in(cache.temp_dir(None).expect("temp_dir must succeed"))
.expect("new temp file must succeed");
tmp.as_file().write_all(b"v1").expect("write must succeed");
cache
.set(Key::new("entry", 1, 2), tmp.path())
.expect("initial set must succeed");
}
// Now put; it should not take.
{
let tmp = NamedTempFile::new_in(cache.temp_dir(None).expect("temp_dir must succeed"))
.expect("new temp file must succeed");
tmp.as_file().write_all(b"v2").expect("write must succeed");
cache
.put(Key::new("entry", 1, 2), tmp.path())
.expect("put must succeed");
}
{
let mut cached = cache
.get(Key::new("entry", 1, 2))
.expect("must succeed")
.expect("must be found");
let mut dst = Vec::new();
cached.read_to_end(&mut dst).expect("read must succeed");
assert_eq!(&dst, b"v1");
}
}
/// Put 2000 files in a 2x300-file cache, and keep touching the first.
/// We should always find the first file, even after all that cleanup.
#[test]
fn test_touch() {
use std::io::Read;
use tempfile::NamedTempFile;
use test_dir::{DirBuilder, TestDir};
// The payload for file `i` is `PAYLOAD_MULTIPLIER * i`.
const PAYLOAD_MULTIPLIER: usize = 113;
let temp = TestDir::temp();
let cache = Cache::new(temp.path("."), 2, 600);
for i in 0..2000 {
// After the first write, we should find our file.
assert_eq!(
cache
.touch(Key::new("0", 0, 42))
.expect("touch must succeed"),
i > 0
);
let name = format!("{}", i);
let temp_dir = cache.temp_dir(None).expect("temp_dir must succeed");
let tmp = NamedTempFile::new_in(temp_dir).expect("new temp file must succeed");
std::fs::write(tmp.path(), format!("{}", PAYLOAD_MULTIPLIER * i))
.expect("write must succeed");
cache
.put(Key::new(&name, i as u64, i as u64 + 42), tmp.path())
.expect("put must succeed");
if i == 0 {
// Make sure file "0" is measurably older than the others.
std::thread::sleep(std::time::Duration::from_secs(2));
}
}
let mut file = cache
.get(Key::new("0", 0, 42))
.expect("get must succeed")
.expect("file must be found");
let mut buf = Vec::new();
file.read_to_end(&mut buf).expect("read must succeed");
assert_eq!(buf, b"0");
}