1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
//! # KeyTree
//! 
//! `KeyTree` is an elegant markup language designed to convert human readable information into Rust
//! data-structures. It is designed to be fast, to reduce cognitive load and to be easy to
//! implement for one's own types. It has no dependencies on other crates and so is fast to
//! compile. The format looks like
//! 
//! ```text
//! hobbit:
//!     name:           Frodo Baggins
//!     age:            98
//!     friends:
//!         hobbit:
//!             name:   Bilbo Baggins
//!             age:    176
//!         hobbit:
//!             name:   Samwise Gamgee
//!             age:    66
//! ```
//!
//! so data can be recursive. Also, it is easy to refer to a set of data using a path such as
//! `hobbit::friends::hobbit` refers to a collection of two hobbits.
//!
//! This library does not follow the standard Rust error handling pattern. If there is a parsing
//! error it will crash or if there is an error in converting a value into a Rust type it will
//! crash (with a nice error message). If you don't want this to happen, you will need to run this
//! in its own thread/process.
//! 
//! ## Data Format Rules
//! 
//! - Indentation has meaning and is 4 spaces, relative to the top key. Since indenting is
//!    relative to the top key, then you can neatly align strings embedded in code.
//! 
//! - Each line can be empty, have whitespace only, be a comment, be a key, or be a key/value
//!    pair.
//! 
//! - There are keys and values. Key/Value pairs look like
//! 
//! ```text
//! name: Frodo
//! ```
//! are used for `struct` fields and `enum` variants.
//! 
//! Keys refer to child keys or child key/value pairs indented on lines under it, for example
//! 
//! ```text
//! hobbit:
//!     name: Frodo
//! ```
//! hobbit refers to the name of the struct or enum. In this way, the data maps simply to Rust
//! data-structures.
//! 
//! - If a key has many children with the same key, it forms a collection, for example
//! 
//! ```test
//! hobbit:
//!     name: Frodo
//!     name: Bilbo
//! ```
//! is a collection of hobbits.
//! 
//! - Keys must not include but must be followed by a colon `:`.
//! 
//! - Values are all characters between the combination of ':' and whitespace and the end of the
//!    line. The value is trimmed of whitespace at both ends.
//! 
//! - Comments require `//` at the start of the line. For example
//! 
//! ```text
//! // comment
//! hobbit:
//!     name: "Frodo"
//! ```
//! 
//! ## Example
//! 
//! `Into` from `KeyTree` into Rust types is automatically implemented for `Vec<T>`, `Option<T>`
//! and basic Rust types. `KeyTree` text can be automatically converted to these data types, making
//! use of type inference. The `at()` function returns an iterator over `KeyTree` types that can be
//! used to implement `Into` for your own types. The following example should cover 90 percent of
//! use cases,
//! 
//! ```rust
//! use keytree::KeyTree;
//! use keytree::parser::KeyTreeBuilder;
//! 
//! #[derive(Debug)]
//! struct Hobbit {
//!     name:    String,
//!     age:     u32,
//!     friends: Vec<Hobbit>,
//!     nick:    Option<String>,
//! }
//! 
//! impl<'a> Into<Hobbit> for KeyTree<'a> {
//!     fn into(self) -> Hobbit {
//!         Hobbit {
//!             name:       self.at("hobbit::name"),
//!             age:        self.at("hobbit::age"),
//!             friends:    self.at("hobbit::friends::hobbit"),
//!             nick:       self.op("hobbit::nick"),
//!         }
//!     }
//! }
//! 
//! fn main() {
//!     let s = r#"
//!          hobbit:
//!              name:         Frodo Baggins
//!              age:          98
//!              friends:
//!                  hobbit:
//!                      name: Bilbo Baggins
//!                      age:  176
//!                  hobbit:
//!                      name: Samwise Gamgee
//!                      age:  66
//!                      nick: Sam"#;
//! 
//!     
//!     let core = KeyTreeBuilder::parse(s);
//!     let hobbit: Hobbit = KeyTree::from_core(&core).into();
//!     dbg!(&hobbit);
//! }
//! ```

pub mod error;
pub mod into;
pub mod parser;
pub mod path;

use error::KeyTreeErr;
use path::{UniquePath, NonUniquePath};
use std::collections::{BTreeMap, HashMap};
use std::collections::btree_map::Range;
use std::fmt;
use std::fmt::{Debug, Display};
use std::iter::Peekable;
use std::ops::Index;
use std::ops::Bound::Included;

#[derive(Clone, Copy, Debug)]
enum Token {
    Key(Key),
    Value(Value),
}

impl Token {
    // Returns the index of the start character of the key in the data string.
    fn start_key(&self) -> usize {
        match self {
            Token::Key(k)    => k.start_key,
            Token::Value(kv) => kv.start_key,
        }
    }
}

impl Display for Token {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Self::Key(k) => {
                write!(f, "({}, {})", k.start_key, k.end_key)
            },
            Self::Value(v) => {
                write!(f, "({}, {}):({}, {})", v.start_key, v.end_key, v.start_val, v.end_val)
            },
        }
    }
}

/// Line 1 is a Key Token. It refers to indented lines under it. Contains pointers into the data
/// string.
///
/// 1. hobbit:
/// 2.     name: Frodo Baggins
/// 3.     age:  98
///
#[derive(Clone, Copy, Debug)]
struct Key {
    start_key:  usize,
    end_key:    usize,
}

impl Key {
    fn new(sk: usize, ek: usize) -> Self {
        Key {
            start_key:  sk,
            end_key:    ek,
        }
    }
}


/// Line 2 and 3 are Value tokens. They each have a value. Contains pointers into the data string.
///
/// 1. hobbit:
/// 2.     name: Frodo Baggins
/// 3.     age:  98
///
#[derive(Clone, Copy, Debug)]
struct Value {
    start_key:  usize,
    end_key:    usize,
    start_val:  usize,
    end_val:    usize,
}

impl Value {
    fn new(sk: usize, ek: usize, sv: usize, ev: usize) -> Self {
        Value {
            start_key:  sk,
            end_key:    ek,
            start_val:  sv,
            end_val:    ev,
        }
    }
}

struct Tokens(Vec<Token>);

impl Tokens {
    fn new() -> Self {
        Tokens(Vec::new())
    }

    fn push(&mut self, token: Token) {
        self.0.push(token)
    }

    fn len(&self) -> usize {
        self.0.len()
    }
}

impl Index<usize> for Tokens {
    type Output = Token;

    fn index(&self, i: usize) -> &Self::Output {
        &(self.0)[i]
    }
}

impl fmt::Debug for Tokens {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut s = String::from("Tokens: ");
        for tok in &self.0 {
            s.push_str(&tok.to_string());
            s.push_str(", ");
        };
        s.pop();
        s.pop();
        write!(f, "{:?}", s)
    }
}

// TokenIndex holds indexes into a start and end position in a list of tokens.
//
#[derive(Clone, Copy)]
struct TokenIndex((usize, Option<usize>));

impl TokenIndex {

    // Create a token builder. The end index will be set later.
    fn new(start: usize) -> Self {
        TokenIndex((start, None))
    }

    fn start(&self) -> usize {
        (self.0).0
    }

    // Will fail if Option is None.
    fn end(&self) -> usize {
        (self.0).1.unwrap()
    }

    fn set_end(&mut self, i: usize) {
        (self.0).1 = Some(i);
    }
}

impl fmt::Display for TokenIndex {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match (self.0).1 {
            Some(_) => write!(f, "({}, {})", self.start(), self.end()),
            None    => write!(f, "({}, _)", self.start()),
        }
    }
}

impl fmt::Debug for TokenIndex{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.to_string())
    }
}

// While parsing, tracks the last ocurring path for each indent level. This is used for getting the
// index of the latest path, and for inserting end indices in TokenIndex when the contents of a
// key have been fully read.
//
#[derive(Debug)]
struct EachIndent(Vec<UniquePath>);

impl EachIndent {

    fn push(&mut self, path: &UniquePath) {
        self.0.push(path.clone())
    }

    fn new() -> Self {
        EachIndent(Vec::new())
    }

    // Used by parser to calculate the index of a newly parsed NonUniquePath.
    //
    fn new_index(&self, path: &UniquePath, indent: usize) -> usize {
        let max_indent = self.0.len() - 1;
        if indent <= max_indent && path.eq_base(&self.0[indent]) {
            self.0[indent].last_index() + 1
        } else {
            0
        }
    }

    fn insert(&mut self, path: &UniquePath, indent: usize) {
        if self.0.is_empty() {
            self.0.push(path.clone())
        } else if indent <= self.0.len() - 1 {
            self.0[indent] = path.clone();
        } else {
            self.0.push(path.clone())
        }
    }

    fn len(&self) -> usize {
        self.0.len()
    }
}

impl Index<usize> for EachIndent {
    type Output = UniquePath;

    fn index(&self, index: usize) -> &Self::Output {
        &self.0[index]
    }
}

struct KeyMap(BTreeMap<UniquePath, TokenIndex>);

impl KeyMap {
    fn new() -> Self {
        let bt: BTreeMap<UniquePath, TokenIndex> = BTreeMap::new();
        KeyMap(bt)
    }

    // That path is a borrow simply reflects stdlib <HashMap>.get().
    //
    fn get(&self, path: &UniquePath) -> Option<TokenIndex> {
        self.0.get(path).map(|tok_ix| *tok_ix)
    }

    fn set_end(&mut self, path: &UniquePath, end: usize) {
        let token_index = self.0.get_mut(path).unwrap();
        token_index.set_end(end);
    }

    // Check if the path already exists and return an error if it does, otherwise insert the path.
    //
    fn insert(&mut self, path: &UniquePath, start: usize) {
        self.0.insert(path.clone(), TokenIndex::new(start));
    }

    pub fn len(&self) -> usize {
        self.0.len()
    }
}

impl Debug for KeyMap {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut s = String::with_capacity(self.len() * 40);
        s.push_str("KeyMap:\n");
        for (key, value) in self.0.iter() {
            s.push_str(&format!("{:?}:{}\n", key, value));
        };
        s.pop();
        write!(f, "{}", s)
    }
}

// This is an iterator over something that can be used to construct KeyTrees.
//
#[derive(Clone, Debug)]
enum Context<'a> {
    // Unique and Iter are the same internally. Unique marks an iterator with one element. Iter
    // marks an iterator with zero of more than one elements.
    Unique(Peekable<Range<'a, UniquePath, TokenIndex>>),
    Iter(Peekable<Range<'a, UniquePath, TokenIndex>>),

    // We need to be able to handle paths that point to nothing. These will fail if we apply into()
    // on these unless the target type is Option<T> or if the target type is Vec<T> which creates
    // an empty Vec. It is not possible to have an empty BTreeMap Range, so we use EmptyIter
    // instead.
    EmptyIter(NonUniquePath),
}

// You can think of converting a KeyTree into a data-type as an algorithm that creates a whole set of
// KeyTrees (which are small efficient structures all pointing into an immutable KeyTreeCore) at each
// node in the tree, and then consumes each of these KeyTrees into the target data-type. The at()
// function creates a new KeyTree which applies a local_path to Self's context to construct a new
// KeyTree and then convert it using into(). next() also creates a new KeyTree by iterating over Self's
// context. The iter() function creates a new Context as a component of constructing a KeyTree.
//
/// `KeyTree` is a mutable reference into the immutable `KeyTreeCore`. You can move the `KeyTree`
/// reference around by applying the `at()` function to it.
///
#[derive(Clone, Debug)]
pub struct KeyTree<'a> {
    keytree_core:   &'a KeyTreeCore<'a>,
    context:        Context<'a>,
}

impl<'a> KeyTree<'a> {

    /// Construct a mutable KeyTree from an immutable KeyTreeCore. See main example at the start of
    /// the documentation or in README.md
    ///
    fn from_core(keytree_core: &'a KeyTreeCore) -> Self {
        KeyTree {
            keytree_core:   keytree_core,
            context:        keytree_core.iter(keytree_core.root.clone().non_unique()),
        }
    }

    /// Finds the value in `path` and converts into `T`. Will crash if it cannot be found. For
    /// context, see main example at the start of the documentation or in README.md
    ///
    // Creates a new KeyTree at a new position in the tree. Then calls into() to convert itself into
    // a type T.
    //
    pub fn at<T>(&self, path: &str) -> T
    where
        KeyTree<'a>: Into<T>
        // T has to be something such that <KeyTree>.into() returns a T.
    {
        let local_path = match NonUniquePath::from(path) {
            Ok(path) => path,
            Err(_)   => { KeyTreeErr::parse_keytree(); unreachable!() },
        };
        
        // Clone this value and append
        // local_path to create a new Context. Call iter() to create a context and then use this to
        // construct KeyTree.
        //
        let global_path = match &self.context {
            Context::Unique(iter) | Context::Iter(iter) => {
                iter.clone()
                    .peek()
                    .unwrap()
                    .0
                    .clone()
                    .append_non_unique(&local_path.tail())
            },
            Context::EmptyIter(_) => {
                KeyTreeErr::not_unique_but_empty();
                unreachable!();
            },
        };
        KeyTree {
            keytree_core: &self.keytree_core,
            context:    self.keytree_core.iter(global_path),
        }.into()
    }

    /// Finds the value in `path` and converts into `Some<T>` if it can be found otherwise returns
    /// `None`. For context, see main example at the start of the documentation or in README.md
    ///
    pub fn op<T>(&self, path: &str) -> Option<T>
    where
        KeyTree<'a>: Into<T>
    {
        let local_path = match NonUniquePath::from(path) {
            Ok(path) => path,
            Err(_)   => { KeyTreeErr::parse_keytree(); unreachable!() },
        };
        
        // Clone this value and append
        // local_path to create a new Context. Call iter() to create a context and then use this to
        // construct KeyTree.
        //
        let global_path = match &self.context {
            Context::Unique(iter) | Context::Iter(iter) => {
                iter.clone()
                    .peek()
                    .unwrap()
                    .0
                    .clone()
                    .append_non_unique(&local_path.tail())
            },
            Context::EmptyIter(_) => {
                KeyTreeErr::not_unique_but_empty();
                unreachable!();
            },
        };

        let context = self.keytree_core.iter(global_path);

        match context {
            Context::EmptyIter(_) => None,
            _ => {
                Some(
                    KeyTree {
                        keytree_core: &self.keytree_core,
                        context:    context,
                    }.into()
                )
            }
        }
    }

    /// Returns the value of at the root of the `KeyTree`. Requires that it is unique, otherwise
    /// crashes with an error. 
    ///
    pub fn value(&mut self) -> Option<&str> {
        match &self.context {
            Context::Unique(iter) => {
                let tok_ix = iter.clone()
                    .peek()
                    .unwrap()
                    .1
                    .end();

                let token = self
                    .keytree_core
                    .tokens[tok_ix];

                match token {
                    Token::Value(tok) => Some(&self.keytree_core.s[tok.start_val..=tok.end_val]),
                    Token::Key(_)     => { panic!("Should not be reachable.") },
                }
            },
            Context::Iter(_)        => { KeyTreeErr::not_unique(); unreachable!() },
            Context::EmptyIter(_)   => None,
        }
    }
}

impl<'a> Iterator for KeyTree<'a> {
    type Item = KeyTree<'a>;

    // Creates a new KeyTree, that has as its context its present Iterator state.
    //
    fn next(&mut self) -> Option<Self::Item> {
        match self.context {
            Context::Iter(ref mut context) | Context::Unique(ref mut context) => {
                match context.next() {
                    Some((path, _)) => {
                        let iter = self
                            .keytree_core.keymap.0
                            .range((Included(path), Included(path)))
                            .peekable();
                        Some(
                            KeyTree {
                                keytree_core: &self.keytree_core,
                                context:    Context::Unique(iter),
                            }
                        )
                    },
                    None => None,
                }
            },
            Context::EmptyIter(_) => {
                // Should not call next() on an KeyTree with an EmptyIter, it should be handled
                // separately in Into implementation.
                panic!("Should not call next() on KeyTree with Context::EmptyIter(_)");
            },
        }
    }
}

// KeyTreeCore is the data-structure generated from parsing an KeyTree string. It can be thought of as
// a tree, with Paths refering to locations in the tree. It is represented as a HashMap (keylen) of
// paths[..] => max. Keymap is a BTree which maps path[0]...path[max] => TokenIndex, which has
// pointers to the start and end of a list of Tokens (tokens). Each token then points into the
// original &str s.
//
// All possible searches are recorded. It is possible to dig into this data structure using
// path[index], but it is simpler for the user to dig using path[..] which returns an iterator over
// the multiple paths. This iterator is then converted to a Rust data structure by taking the
// iterator and apply into() from the Into Trait, which in turn can dig further into its
// (sub)-KeyTree, recording its position in the tree, and then doing another lookup in the global
// KeyTreeCore.
//
/// `KeyTreeCore` is the immutable result of parsing a string.
///
pub struct KeyTreeCore<'a> {
    s:          &'a str,
                // `s` is a reference to the original str passed into new(),

    keymap: KeyMap,
                // Maps unique Path to a TokenIndex

    keylen:     KeyLen,
                // Maps non-unique Path to a usize. The usize is the max index of this Path in KeyMap.
                        
    tokens:     Tokens,     
                // Lists all the tokens. Tokens point into `s`.

    root:   UniquePath,  
                // Sets the immutable root of the parsed string.
}

impl<'a> KeyTreeCore<'a> {
    // Constructs a Context given a global_path. This is used in at().
    fn iter(&self, global_path: NonUniquePath) -> Context {
        match self.keylen.0.get(&global_path) {
            Some(max) => {
                // Set the bounds on the BTree
                let start_path  = global_path.clone().unique(0);
                let end_path    = global_path.clone().unique(*max);

                let iter = self
                    .keymap.0
                    .range((Included(start_path), Included(end_path)))
                    .peekable();

                if *max == 0 {
                    Context::Unique(iter)
                } else {
                    Context::Iter(iter)
                }
            },
            None => {
                Context::EmptyIter(global_path)
            },
        }
    }
}

impl<'a> fmt::Debug for KeyTreeCore<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}\n{:?}\n{:?}\n{:?}", self.s, self.tokens, self.keymap, self.keylen)
    }
}

// KeyLen is a part of KeyTreeCore (the immutable representation of a KeyTree string). It records the
// number of elements in a path.
//
struct KeyLen(HashMap<NonUniquePath, usize>);

impl KeyLen {

    fn new() -> Self {
        KeyLen(HashMap::new())
    }

    fn get(&self, path: &NonUniquePath) -> Option<usize> {
        match self.0.get(path) {
            Some(path)  => Some(*path),
            None        => None,
        }
    }

    // This is used only while parsing.
    //
    fn insert(&mut self, path: &UniquePath) {
        self.0.insert(path.clone().non_unique(), path.last_index());
    }
}

impl<'a> fmt::Debug for KeyLen {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut s = String::from("Keylen: \n");
        for (key, value) in self.0.iter() {
            s.push_str(&format!("{:?}: {:?}\n", key, value));
        };
        write!(f, "{}", s)
    }
}