1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
use core::fmt;

/// Validated value
///
/// `Valid<T>` wraps a value `T` that has been validated using [`Validate`] trait.
///
/// `Valid<T>` provides only immutable access to `T`. For instance, if you want to change content of `T`, you
/// need to [deconstruct](Valid::into_inner) it, do necessary modifications, and then validate it again.
///
/// ## Transitive "valideness" through `AsRef`
/// `Valid<T>` assumes that if `T` implements `AsRef<K>` and `K` can be validated (i.e. `K` implements [`Validate`]),
/// then `K` has been validated when `T` was validated. Thus, if you have value of type `Valid<T>`, you can obtain
/// `&Valid<K>` via `AsRef` trait.
///
/// Example of transitive valideness is demostrated below:
/// ```rust
/// use key_share::{Validate, Valid};
///
/// pub type CoreKeyShare = Valid<DirtyCoreKeyShare>;
/// pub type KeyInfo = Valid<DirtyKeyInfo>;
/// # use key_share::InvalidCoreShare as InvalidKeyShare;
///
/// # type SecretScalar = u128;
/// pub struct DirtyCoreKeyShare {
///     i: u16,
///     key_info: DirtyKeyInfo,
///     x: SecretScalar,
/// }
/// pub struct DirtyKeyInfo { /* ... */ }
///
/// // Key info can be validated separately
/// impl Validate for DirtyKeyInfo {
///     type Error = InvalidKeyShare;
///     fn is_valid(&self) -> Result<(), Self::Error> {
///         // ...
///         # Ok(())
///     }
/// }
///
/// // CoreKeyShare can be validated as well
/// impl Validate for DirtyCoreKeyShare {
///     type Error = InvalidKeyShare;
///     fn is_valid(&self) -> Result<(), Self::Error> {
///         // Since `key_info` is part of key share, it **must be** validated when
///         // the key share is validated
///         self.key_info.is_valid();
///         // ...
///         # Ok(())
///     }
/// }
/// impl AsRef<DirtyKeyInfo> for DirtyCoreKeyShare {
///     fn as_ref(&self) -> &DirtyKeyInfo {
///         &self.key_info
///     }
/// }
///
/// # let (i, key_info, x) = (0, DirtyKeyInfo {}, 42);
/// let key_share: CoreKeyShare = DirtyCoreKeyShare { i, key_info, x }.validate()?;
///
/// // Since `key_share` is validated, and it contains `key_info`, we can obtain a `&KeyInfo`.
/// // `Valid<T>` trusts that `<DirtyCoreKeyShare as Validate>::is_valid` has validated `key_info`.
/// let key_info: &KeyInfo = key_share.as_ref();
/// #
/// # Ok::<_, Box<dyn std::error::Error>>(())
/// ```
///
/// This mechanism allow to improve performance by not validating what's already been validated. However, incorrect
/// implementation of `Validate` trait may lead to obtaining `Valid<K>` that's actually invalid. It may, in return,
/// lead to runtime panic and/or compromised security of the application. Make sure that all implementations of
/// [`Validate`] trait are correct and aligned with `AsRef` implementations.
#[derive(Debug, Clone)]
#[repr(transparent)]
pub struct Valid<T>(T);

impl<T> Valid<T>
where
    T: Validate,
{
    /// Validates the value
    ///
    /// If value is valid, returns `Ok(validated_value)` wrapped into type guard [`Valid<T>`](Valid), otherwise returns
    /// `Err(err)` containing the error and the invalid value.
    pub fn validate(value: T) -> Result<Self, ValidateError<T, <T as Validate>::Error>> {
        if let Err(err) = value.is_valid() {
            Err(ValidateError {
                invalid_value: value,
                error: err,
            })
        } else {
            Ok(Self(value))
        }
    }

    /// Validates a reference to value `&T` returning `&Valid<T>` if it's valid
    pub fn validate_ref(value: &T) -> Result<&Self, ValidateError<&T, <T as Validate>::Error>> {
        if let Err(err) = value.is_valid() {
            Err(ValidateError {
                invalid_value: value,
                error: err,
            })
        } else {
            Ok(Self::from_ref_unchecked(value))
        }
    }

    /// Constructs and validates value from parts
    ///
    /// Refer to [`ValidateFromParts`] trait documentation
    pub fn from_parts<Parts>(
        parts: Parts,
    ) -> Result<Self, ValidateError<Parts, <T as Validate>::Error>>
    where
        T: ValidateFromParts<Parts>,
    {
        if let Err(err) = T::validate_parts(&parts) {
            Err(ValidateError {
                invalid_value: parts,
                error: err,
            })
        } else {
            Ok(Self(T::from_parts(parts)))
        }
    }

    /// Constructs `&Valid<T>` from `&T`, assumes that `T` has been validated
    ///
    /// Performs a debug assertion that `T` is validated
    fn from_ref_unchecked(value: &T) -> &Self {
        #[cfg(debug_assertions)]
        #[allow(clippy::expect_used)]
        value
            .is_valid()
            .expect("debug assertions: value is invalid, but was assumed to be valid");

        // SAFETY: &T and &Valid<T> have exactly the same in-memory representation
        // thanks to `repr(transparent)`, so it's sound to transmute the references.
        // Note also that input and output references have exactly the same lifetime.
        unsafe { core::mem::transmute(value) }
    }
}

impl<T> Valid<T> {
    /// Returns wraped validated value
    pub fn into_inner(self) -> T {
        self.0
    }
}

impl<T> AsRef<T> for Valid<T> {
    fn as_ref(&self) -> &T {
        &self.0
    }
}

impl<T> core::ops::Deref for Valid<T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T, K> AsRef<Valid<K>> for Valid<T>
where
    T: Validate + AsRef<K>,
    K: Validate,
{
    fn as_ref(&self) -> &Valid<K> {
        let sub_value = self.0.as_ref();
        Valid::from_ref_unchecked(sub_value)
    }
}

/// Represents a type that can be validated
pub trait Validate {
    /// Validation error
    type Error: fmt::Debug;

    /// Checks whether value is valid
    ///
    /// Returns `Ok(())` if it's valid, otherwise returns `Err(err)`
    fn is_valid(&self) -> Result<(), Self::Error>;

    /// Validates the value
    ///
    /// If value is valid, returns `Ok(validated_value)` wrapped into type guard [`Valid<T>`](Valid), otherwise returns
    /// `Err(err)` containing the error and the invalid value.
    fn validate(self) -> Result<Valid<Self>, ValidateError<Self, Self::Error>>
    where
        Self: Sized,
    {
        Valid::validate(self)
    }

    /// Validates the value by reference
    ///
    /// If value is valid, returns [`&Valid<Self>`](Valid), otherwise returns validation error
    fn validate_ref(&self) -> Result<&Valid<Self>, Self::Error>
    where
        Self: Sized,
    {
        Valid::validate_ref(self).map_err(|err| err.into_error())
    }
}

impl<T: Validate> Validate for &T {
    type Error = <T as Validate>::Error;
    fn is_valid(&self) -> Result<(), Self::Error> {
        (*self).is_valid()
    }
}

/// Represents a type that can be constructed and validated from `Parts`
///
/// That can be particularly useful when vaidating `Parts` is cheaper than validating `Self`.
///
/// ## Example
/// Suppose you have a struct `KeyShare` that consists of [`DirtyCoreKeyShare`](crate::DirtyCoreKeyShare) and some `AuxData`. In
/// order to validate `KeyShare`, both core key share and aux data need to be validated separately and then they need to be
/// checked for consistency. Now, if you already have `Valid<DirtyKeyShare>` and `Valid<AuxData>`, then you can skip their validation
/// and only check that they're consistent.
///
/// ```rust
/// use key_share::{Valid, Validate, ValidateFromParts};
/// use generic_ec::Curve;
///
/// pub struct KeyShare<E: Curve> {
///     core: key_share::DirtyCoreKeyShare<E>,
///     aux: AuxData,
/// }
/// # pub struct AuxData { /* ... */ }
/// # impl Validate for AuxData {
/// #     type Error = std::convert::Infallible;
/// #     fn is_valid(&self) -> Result<(), Self::Error> { Ok(()) }
/// # }
///
/// # type InvalidKeyShare = Box<dyn std::error::Error>;
/// // Validation for the whole key share can be expensive
/// impl<E: Curve> Validate for KeyShare<E> {
///     type Error = InvalidKeyShare;
///     fn is_valid(&self) -> Result<(), Self::Error> {
///         self.core.is_valid()?;
///         self.aux.is_valid()?;
///         check_consistency(&self.core, &self.aux)
///     }
/// }
/// fn check_consistency<E: Curve>(
///     core: &key_share::DirtyCoreKeyShare<E>,
///     aux: &AuxData,
/// ) -> Result<(), InvalidKeyShare> {
///     // check that `core` and `aux` seem to match each other
/// # Ok(())
/// }
///
/// // Sometimes, we already validated that `core` and `aux` are valid, so we can perform cheaper validation:
/// impl<E: Curve> ValidateFromParts<(Valid<key_share::DirtyCoreKeyShare<E>>, Valid<AuxData>)>
///     for KeyShare<E>
/// {
///     fn validate_parts(parts: &(Valid<key_share::DirtyCoreKeyShare<E>>, Valid<AuxData>)) -> Result<(), Self::Error> {
///         check_consistency(&parts.0, &parts.1)
///     }
///     fn from_parts(parts: (Valid<key_share::DirtyCoreKeyShare<E>>, Valid<AuxData>)) -> Self {
///         Self { core: parts.0.into_inner(), aux: parts.1.into_inner() }
///     }
/// }
/// ```
pub trait ValidateFromParts<Parts>: Validate {
    /// Validates parts
    ///
    /// Note: implementation **must** guarantee that if `T::validate_parts(parts).is_ok()` then `T::from_parts(parts).is_valid().is_ok()`
    fn validate_parts(parts: &Parts) -> Result<(), Self::Error>;
    /// Constructs `Self` from parts
    fn from_parts(parts: Parts) -> Self;
}

/// Validation error
///
/// Contains an error that explains why value was considered invalid, and the value itself. It can be used
/// to reclaim ownership over invalid value.
pub struct ValidateError<T, E> {
    invalid_value: T,
    error: E,
}

impl<T, E> ValidateError<T, E> {
    /// Returns reference to value that did not pass validation
    pub fn invalid_value(&self) -> &T {
        &self.invalid_value
    }

    /// Returns error explaining why value was considered invalid
    pub fn error(&self) -> &E {
        &self.error
    }

    /// Reclaim ownership over invalidated value
    pub fn into_invalid_value(self) -> T {
        self.invalid_value
    }

    /// Returns ownership over error
    pub fn into_error(self) -> E {
        self.error
    }
}

impl<T, E: fmt::Debug> fmt::Debug for ValidateError<T, E> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ValidateError")
            .field("error", &self.error)
            .finish_non_exhaustive()
    }
}

impl<T, E: fmt::Display> fmt::Display for ValidateError<T, E> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("validation error")
    }
}

#[cfg(feature = "std")]
impl<T, E> std::error::Error for ValidateError<T, E>
where
    E: std::error::Error + 'static,
{
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        Some(&self.error)
    }
}

#[cfg(feature = "serde")]
impl<T> serde::Serialize for Valid<T>
where
    T: serde::Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        (**self).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, T> serde::Deserialize<'de> for Valid<T>
where
    T: Validate + serde::Deserialize<'de>,
    <T as Validate>::Error: fmt::Display,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        use serde::de::Error;
        let value = T::deserialize(deserializer)?;
        value.validate().map_err(|err| {
            D::Error::custom(format_args!(
                "deserialized value is invalid: {}",
                err.error()
            ))
        })
    }
}