kestrel_timer/
lib.rs

1//! # High-Performance Async Timer System
2//!
3//! High-performance async timer based on Timing Wheel algorithm, supports tokio runtime
4//!
5//! ## Features
6//!
7//! - **High Performance**: Uses timing wheel algorithm, insert and delete operations are O(1)
8//! - **Large-Scale Support**: Efficiently manages 10000+ concurrent timers
9//! - **Async Support**: Based on tokio async runtime
10//! - **Thread-Safe**: Uses parking_lot for high-performance locking mechanism
11//!
12//!
13//! # 高性能异步定时器库
14//!
15//! 基于分层时间轮算法的高性能异步定时器库,支持 tokio 运行时
16//!
17//! ## 特性
18//!
19//! - **高性能**: 使用时间轮算法,插入和删除操作均为 O(1)
20//! - **大规模支持**: 高效管理 10000+ 并发定时器
21//! - **异步支持**: 基于 tokio 异步运行时
22//! - **线程安全**: 使用 parking_lot 提供高性能的锁机制
23//!
24//! ## Quick Start (快速开始)
25//!
26//! ```no_run
27//! use kestrel_timer::{TimerWheel, CallbackWrapper, TimerTask};
28//! use std::time::Duration;
29//! use std::sync::Arc;
30//!
31//! #[tokio::main]
32//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
33//!     // Create timer manager (创建定时器管理器)
34//!     let timer = TimerWheel::with_defaults();
35//!     
36//!     // Step 1: Allocate handle to get task_id (分配 handle 获取 task_id)
37//!     let handle = timer.allocate_handle();
38//!     let task_id = handle.task_id();
39//!     
40//!     // Step 2: Create timer task (创建定时器任务)
41//!     let callback = Some(CallbackWrapper::new(|| async {
42//!         println!("Timer fired after 1 second!");
43//!     }));
44//!     let task = TimerTask::new_oneshot(Duration::from_secs(1), callback);
45//!     
46//!     // Step 3: Register timer task and get completion notification (注册定时器任务并获取完成通知)
47//!     let timer_handle = timer.register(handle, task);
48//!     
49//!     // Wait for timer completion (等待定时器完成)
50//!     use kestrel_timer::CompletionReceiver;
51//!     let (rx, _handle) = timer_handle.into_parts();
52//!     match rx {
53//!         CompletionReceiver::OneShot(receiver) => {
54//!             receiver.wait().await;
55//!         },
56//!         _ => {}
57//!     }
58//!     Ok(())
59//! }
60//! ```
61//!
62//! ## English Architecture Description
63//!
64//! ### Timing Wheel Algorithm
65//!
66//! Uses hierarchical timing wheel algorithm with L0 and L1 layers:
67//!
68//! - **L0 Layer (Bottom)**: Handles short delay tasks
69//!   - Slot count: Default 512, configurable, must be power of 2
70//!   - Time precision: Default 10ms, configurable
71//!   - Maximum time span: 5.12 seconds
72//!
73//! - **L1 Layer (Upper)**: Handles long delay tasks
74//!   - Slot count: Default 64, configurable, must be power of 2
75//!   - Time precision: Default 1 second, configurable
76//!   - Maximum time span: 64 seconds
77//!
78//! - **Round Mechanism**: Tasks beyond L1 range use round counting
79//!
80//! ### Task Indexing with DeferredMap
81//!
82//! Uses `DeferredMap` (a generational arena) for efficient task management:
83//!
84//! - **Two-Step Registration**:
85//!   1. Allocate handle to get task ID (cheap, no value needed)
86//!   2. Insert task using the handle (with completion notifiers)
87//!
88//! - **Generational Safety**: Each task ID includes:
89//!   - Lower 32 bits: Slot index
90//!   - Upper 32 bits: Generation counter
91//!   - Prevents use-after-free and ABA problems
92//!
93//! - **Memory Efficiency**: Slots use union-based storage
94//!   - Occupied slots: Store task data
95//!   - Vacant slots: Store free-list pointer
96//!
97//! ### Performance Optimization
98//!
99//! - Uses `parking_lot::Mutex` instead of standard library Mutex for better performance
100//! - Uses `DeferredMap` (generational arena) for task indexing:
101//!   - O(1) task lookup, insertion, and removal
102//!   - Generational indices prevent use-after-free bugs
103//!   - Memory-efficient slot reuse with union-based storage
104//!   - Deferred insertion allows getting task ID before inserting task
105//! - Slot count is power of 2, uses bitwise operations to optimize modulo
106//! - Task execution in separate tokio tasks to avoid blocking timing wheel advancement
107//!
108//!
109//!
110//! ## 中文架构说明
111//!
112//! ### 时间轮算法
113//!
114//! 采用分层时间轮(Hierarchical Timing Wheel)算法,包含 L0 和 L1 两层:
115//!
116//! - **L0 层(底层)**: 处理短延迟任务
117//!   - 槽位数量: 默认 512 个(可配置,必须是 2 的幂次方)
118//!   - 时间精度: 默认 10ms(可配置)
119//!   - 最大时间跨度: 5.12 秒
120//!
121//! - **L1 层(高层)**: 处理长延迟任务
122//!   - 槽位数量: 默认 64 个(可配置,必须是 2 的幂次方)
123//!   - 时间精度: 默认 1 秒(可配置)
124//!   - 最大时间跨度: 64 秒
125//!
126//! - **轮次机制**: 超出 L1 层范围的任务使用轮次计数处理
127//!
128//! ### 基于 DeferredMap 的任务索引
129//!
130//! 使用 `DeferredMap`(代数竞技场)实现高效任务管理:
131//!
132//! - **两步注册流程**:
133//!   1. 分配 handle 获取任务 ID(轻量操作,无需准备任务值)
134//!   2. 使用 handle 插入任务(携带完成通知器)
135//!
136//! - **代数安全**: 每个任务 ID 包含:
137//!   - 低 32 位:槽位索引
138//!   - 高 32 位:代数计数器
139//!   - 防止释放后使用和 ABA 问题
140//!
141//! - **内存高效**: 槽位使用联合体存储
142//!   - 已占用槽位:存储任务数据
143//!   - 空闲槽位:存储空闲链表指针
144//!
145//! ### 性能优化
146//!
147//! - 使用 `parking_lot::Mutex` 替代标准库的 Mutex,提供更好的性能
148//! - 使用 `DeferredMap`(代数竞技场)进行任务索引:
149//!   - O(1) 任务查找、插入和删除
150//!   - 代数索引防止释放后使用(use-after-free)错误
151//!   - 基于联合体的槽位存储,内存高效复用
152//!   - 延迟插入允许在插入任务前获取任务 ID
153//! - 槽位数量为 2 的幂次方,使用位运算优化取模操作
154//! - 任务执行在独立的 tokio 任务中,避免阻塞时间轮推进
155//!
156
157pub mod config;
158pub mod error;
159mod service;
160pub mod task;
161pub mod timer;
162pub mod wheel;
163
164#[cfg(test)]
165mod tests;
166
167// Re-export public API
168pub use service::{TaskNotification, TimerService};
169pub use task::CompletionReceiver;
170pub use task::{CallbackWrapper, TaskCompletion, TaskId, TimerTask};
171pub use timer::TimerWheel;
172pub use timer::handle::{
173    BatchHandle, BatchHandleWithCompletion, TimerHandle, TimerHandleWithCompletion,
174};
175
176#[cfg(test)]
177mod integration_tests {
178    use super::*;
179    use std::sync::Arc;
180    use std::sync::atomic::{AtomicU32, Ordering};
181    use std::time::Duration;
182
183    #[tokio::test]
184    async fn test_basic_timer() {
185        let timer = TimerWheel::with_defaults();
186        let counter = Arc::new(AtomicU32::new(0));
187        let counter_clone = Arc::clone(&counter);
188
189        let handle = timer.allocate_handle();
190        let task = TimerTask::new_oneshot(
191            Duration::from_millis(50),
192            Some(CallbackWrapper::new(move || {
193                let counter = Arc::clone(&counter_clone);
194                async move {
195                    counter.fetch_add(1, Ordering::SeqCst);
196                }
197            })),
198        );
199        timer.register(handle, task);
200
201        tokio::time::sleep(Duration::from_millis(100)).await;
202        assert_eq!(counter.load(Ordering::SeqCst), 1);
203    }
204
205    #[tokio::test]
206    async fn test_multiple_timers() {
207        let timer = TimerWheel::with_defaults();
208        let counter = Arc::new(AtomicU32::new(0));
209
210        // Create 10 timers
211        for i in 0..10 {
212            let counter_clone = Arc::clone(&counter);
213            let handle = timer.allocate_handle();
214            let task = TimerTask::new_oneshot(
215                Duration::from_millis(10 * (i + 1)),
216                Some(CallbackWrapper::new(move || {
217                    let counter = Arc::clone(&counter_clone);
218                    async move {
219                        counter.fetch_add(1, Ordering::SeqCst);
220                    }
221                })),
222            );
223            timer.register(handle, task);
224        }
225
226        tokio::time::sleep(Duration::from_millis(200)).await;
227        assert_eq!(counter.load(Ordering::SeqCst), 10);
228    }
229
230    #[tokio::test]
231    async fn test_timer_cancellation() {
232        let timer = TimerWheel::with_defaults();
233        let counter = Arc::new(AtomicU32::new(0));
234
235        // Create 5 timers
236        let mut handles = Vec::new();
237        for _ in 0..5 {
238            let counter_clone = Arc::clone(&counter);
239            let alloc_handle = timer.allocate_handle();
240            let task = TimerTask::new_oneshot(
241                Duration::from_millis(100),
242                Some(CallbackWrapper::new(move || {
243                    let counter = Arc::clone(&counter_clone);
244                    async move {
245                        counter.fetch_add(1, Ordering::SeqCst);
246                    }
247                })),
248            );
249            let handle = timer.register(alloc_handle, task);
250            handles.push(handle);
251        }
252
253        // Cancel first 3 timers
254        for i in 0..3 {
255            let cancel_result = handles[i].cancel();
256            assert!(cancel_result);
257        }
258
259        tokio::time::sleep(Duration::from_millis(200)).await;
260        // Only 2 timers should be triggered
261        assert_eq!(counter.load(Ordering::SeqCst), 2);
262    }
263
264    #[tokio::test]
265    async fn test_completion_notification_once() {
266        let timer = TimerWheel::with_defaults();
267        let counter = Arc::new(AtomicU32::new(0));
268        let counter_clone = Arc::clone(&counter);
269
270        let alloc_handle = timer.allocate_handle();
271        let task = TimerTask::new_oneshot(
272            Duration::from_millis(50),
273            Some(CallbackWrapper::new(move || {
274                let counter = Arc::clone(&counter_clone);
275                async move {
276                    counter.fetch_add(1, Ordering::SeqCst);
277                }
278            })),
279        );
280        let handle = timer.register(alloc_handle, task);
281
282        // Wait for completion notification
283        let (rx, _handle) = handle.into_parts();
284        match rx {
285            task::CompletionReceiver::OneShot(receiver) => {
286                receiver.wait().await;
287            }
288            _ => panic!("Expected OneShot completion receiver"),
289        }
290
291        // Verify callback has been executed (wait a moment to ensure callback execution is complete)
292        tokio::time::sleep(Duration::from_millis(20)).await;
293        assert_eq!(counter.load(Ordering::SeqCst), 1);
294    }
295
296    #[tokio::test]
297    async fn test_notify_only_timer_once() {
298        let timer = TimerWheel::with_defaults();
299
300        let alloc_handle = timer.allocate_handle();
301        let task = TimerTask::new_oneshot(Duration::from_millis(50), None);
302        let handle = timer.register(alloc_handle, task);
303
304        // Wait for completion notification (no callback, only notification)
305        let (rx, _handle) = handle.into_parts();
306        match rx {
307            task::CompletionReceiver::OneShot(receiver) => {
308                receiver.wait().await;
309            }
310            _ => panic!("Expected OneShot completion receiver"),
311        }
312    }
313
314    #[tokio::test]
315    async fn test_batch_completion_notifications() {
316        let timer = TimerWheel::with_defaults();
317        let counter = Arc::new(AtomicU32::new(0));
318
319        // Step 1: Allocate handles
320        let handles = timer.allocate_handles(5);
321
322        // Step 2: Create batch callbacks
323        let tasks: Vec<_> = (0..5)
324            .map(|i| {
325                let counter = Arc::clone(&counter);
326                let delay = Duration::from_millis(50 + i as u64 * 10);
327                let callback = CallbackWrapper::new(move || {
328                    let counter = Arc::clone(&counter);
329                    async move {
330                        counter.fetch_add(1, Ordering::SeqCst);
331                    }
332                });
333                TimerTask::new_oneshot(delay, Some(callback))
334            })
335            .collect();
336
337        // Step 3: Batch register
338        let batch = timer
339            .register_batch(handles, tasks)
340            .expect("register_batch should succeed");
341        let (receivers, _batch_handle) = batch.into_parts();
342
343        // Wait for all completion notifications
344        for rx in receivers {
345            match rx {
346                task::CompletionReceiver::OneShot(receiver) => {
347                    receiver.wait().await;
348                }
349                _ => panic!("Expected OneShot completion receiver"),
350            }
351        }
352
353        // Wait a moment to ensure callback execution is complete
354        tokio::time::sleep(Duration::from_millis(50)).await;
355
356        // Verify all callbacks have been executed
357        assert_eq!(counter.load(Ordering::SeqCst), 5);
358    }
359
360    #[tokio::test]
361    async fn test_completion_reason_expired() {
362        let timer = TimerWheel::with_defaults();
363
364        let alloc_handle = timer.allocate_handle();
365        let task = TimerTask::new_oneshot(Duration::from_millis(50), None);
366        let handle = timer.register(alloc_handle, task);
367
368        // Wait for completion notification and verify reason is Expired
369        let (rx, _handle) = handle.into_parts();
370        let result = match rx {
371            task::CompletionReceiver::OneShot(receiver) => receiver.wait().await,
372            _ => panic!("Expected OneShot completion receiver"),
373        };
374        assert_eq!(result, TaskCompletion::Called);
375    }
376
377    #[tokio::test]
378    async fn test_completion_reason_cancelled() {
379        let timer = TimerWheel::with_defaults();
380
381        let alloc_handle = timer.allocate_handle();
382        let task = TimerTask::new_oneshot(Duration::from_secs(10), None);
383        let handle = timer.register(alloc_handle, task);
384
385        // Cancel task
386        let cancelled = handle.cancel();
387        assert!(cancelled);
388
389        // Wait for completion notification and verify reason is Cancelled
390        let (rx, _handle) = handle.into_parts();
391        let result = match rx {
392            task::CompletionReceiver::OneShot(receiver) => receiver.wait().await,
393            _ => panic!("Expected OneShot completion receiver"),
394        };
395        assert_eq!(result, TaskCompletion::Cancelled);
396    }
397
398    #[tokio::test]
399    async fn test_batch_completion_reasons() {
400        let timer = TimerWheel::with_defaults();
401
402        // Step 1: Allocate handles
403        let handles = timer.allocate_handles(5);
404
405        // Step 2: Create 5 tasks with 10 seconds delay
406        let tasks: Vec<_> = (0..5)
407            .map(|_| TimerTask::new_oneshot(Duration::from_secs(10), None))
408            .collect();
409
410        // Step 3: Batch register
411        let batch = timer
412            .register_batch(handles, tasks)
413            .expect("register_batch should succeed");
414        let task_ids: Vec<_> = batch.task_ids().to_vec();
415        let (mut receivers, _batch_handle) = batch.into_parts();
416
417        // Cancel first 3 tasks
418        timer.cancel_batch(&task_ids[0..3]);
419
420        // Verify first 3 tasks received Cancelled notification
421        for rx in receivers.drain(0..3) {
422            let result = match rx {
423                task::CompletionReceiver::OneShot(receiver) => receiver.wait().await,
424                _ => panic!("Expected OneShot completion receiver"),
425            };
426            assert_eq!(result, TaskCompletion::Cancelled);
427        }
428
429        // Cancel remaining tasks and verify
430        timer.cancel_batch(&task_ids[3..5]);
431        for rx in receivers {
432            let result = match rx {
433                task::CompletionReceiver::OneShot(receiver) => receiver.wait().await,
434                _ => panic!("Expected OneShot completion receiver"),
435            };
436            assert_eq!(result, TaskCompletion::Cancelled);
437        }
438    }
439}