kernel_density_estimation/kernel/
silverman.rs1use crate::float::{float, primitive, KDEFloat};
4use crate::kernel::Kernel;
5
6use std::f64::consts::{E, FRAC_PI_4, SQRT_2};
7
8#[derive(Clone, Copy, Debug)]
10pub struct SilvermanKernel;
11
12impl<F: KDEFloat> Kernel<F> for SilvermanKernel {
13 fn pdf(&self, x: F) -> F {
14 let abs_x = x.abs();
15 if abs_x <= F::one() {
16 let term_a = 0.5 * E.powf(-primitive!(x.abs()) / SQRT_2);
17 let term_b = ((primitive!(x.abs()) / SQRT_2) + FRAC_PI_4).sin();
18 float!(term_a * term_b)
19 } else {
20 F::zero()
21 }
22 }
23}
24
25#[cfg(test)]
26mod tests {
27 use super::SilvermanKernel;
28 use crate::kernel::Kernel;
29 use approx::*;
30
31 #[test]
32 fn silverman_kernel() {
33 let kernel = SilvermanKernel;
34
35 let x = 0.0;
36 let res = kernel.pdf(x);
37 assert_relative_eq!(res, 0.35355, epsilon = 1.0e-5);
38
39 let x = -1.0;
40 let res = kernel.pdf(x);
41 assert_relative_eq!(res, 0.24578, epsilon = 1.0e-5);
42
43 let x = 1.0;
44 let res = kernel.pdf(x);
45 assert_relative_eq!(res, 0.24578, epsilon = 1.0e-5);
46
47 let x = 0.5;
48 let res = kernel.pdf(x);
49 assert_relative_eq!(res, 0.31886, epsilon = 1.0e-5);
50 }
51}