Expand description

Kernel density estimation in Rust.

Kernel density estimation (KDE) is a non-parametric method to estimate the probability density function of a random variable by taking the summation of kernel functions centered on each data point. This crate serves three major purposes based on this idea:

  1. Evaluate the probability density function of a random variable.
  2. Evaluate the cumulative distribution function of a random variable.
  3. Sample data points from the probability density function.

An excellent technical description of the method is available here1.


  1. García-Portugués, E. (2022). Notes for Nonparametric Statistics. Version 6.5.9. ISBN 978-84-09-29537-1. 

Modules§

  • Bandwidth selection strategies.
  • Float constraints for generic math.
  • Kernel functions.
  • use kernel_density_estimation::prelude::*; to import all common functionality.