keplerian_sim/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
//! # Keplerian Orbital Mechanics
//! This library crate contains logic for Keplerian orbits, similar to the ones
//! you'd find in a game like Kerbal Space Program.
//!
//! Keplerian orbits are special in that they are more stable and predictable than
//! Newtonian orbits. In fact, unlike Newtonian orbits, Keplerian orbits don't use
//! time steps to calculate the next position of an object. Keplerian orbits use
//! state vectors to determine the object's *full trajectory* at any given time.
//! This way, you don't need to worry about lag destabilizing Keplerian orbits.
//!
//! However, Keplerian orbits are significantly more complex to calculate than
//! just using Newtonian physics. It's also a two-body simulation, meaning that
//! it doesn't account for external forces like gravity from other bodies or the
//! engines of a spacecraft.
//!
//! The way Kerbal Space Program handles this is to have an "on-rails" physics
//! system utilizing Keplerian orbits, and an "active" physics system utilizing
//! Newtonian two-body physics.
//!
//! ## Getting started
//! This crate provides four main structs:
//! - [`Orbit`]: A struct representing an orbit around a celestial body.
//! Each instance of this struct has some cached data to speed up
//! certain calculations, and has a larger memory footprint.
//! - [`CompactOrbit`]: A struct representing an orbit around a celestial body.
//! This struct has a smaller memory footprint than the regular `Orbit` struct,
//! but some calculations may take 2~10x slower because it doesn't save any
//! cached calculations.
//! - [`Body`]: A struct representing a celestial body. This struct contains
//! information about the body's mass, radius, and orbit.
//! - [`Universe`]: A struct representing the entire simulation. This struct
//! contains a list of all the bodies in the simulation, and can calculate
//! the absolute position of any body at any given time.
//! To do this, it stores parent-child relationships between bodies.
//!
//! We also provide a [`body_presets`] module, which contains some preset celestial
//! bodies to use in your simulation. It contains many celestial bodies, like
//! the Sun, the Moon, and all the planets in the Solar System.
//!
//! ## Example
//!
//! ```rust
//! use keplerian_sim::{Orbit, OrbitTrait};
//!
//! # fn main() {
//! // Create a perfectly circular orbit with a radius of 1 meter
//! let orbit = Orbit::new_default();
//! assert_eq!(orbit.get_position_at_time(0.0), (1.0, 0.0, 0.0));
//! # }
//! #
//! ```
#![warn(missing_docs)]
mod cached_orbit;
mod compact_orbit;
mod body;
mod universe;
pub mod body_presets;
pub use cached_orbit::Orbit;
pub use compact_orbit::CompactOrbit;
pub use body::Body;
pub use universe::Universe;
/// A struct representing a 3x2 matrix.
///
/// This struct is used to store the transformation matrix
/// for transforming a 2D vector into a 3D vector.
///
/// Namely, it is used in the [`tilt_flat_position`][OrbitTrait::tilt_flat_position]
/// method to tilt a 2D position into 3D, using the orbital parameters.
///
/// Each element is named `eXY`, where `X` is the row and `Y` is the column.
///
/// # Example
/// ```
/// use keplerian_sim::Matrix3x2;
///
/// let matrix: Matrix3x2<f64> = Matrix3x2 {
/// e11: 1.0, e12: 0.0,
/// e21: 0.0, e22: 1.0,
/// e31: 0.0, e32: 0.0,
/// };
///
/// let vec = (1.0, 2.0);
///
/// let result = matrix.dot_vec(vec);
///
/// assert_eq!(result, (1.0, 2.0, 0.0));
/// ```
#[allow(missing_docs)]
#[derive(Clone, Debug, PartialEq)]
pub struct Matrix3x2<T> {
// Element XY
pub e11: T, pub e12: T,
pub e21: T, pub e22: T,
pub e31: T, pub e32: T
}
impl<T: Copy> Copy for Matrix3x2<T> {}
impl<T: Eq> Eq for Matrix3x2<T> {}
impl<T: Copy> Matrix3x2<T> {
/// Create a new Matrix3x2 instance where each
/// element is initialized with the same value.
///
/// # Example
/// ```
/// use keplerian_sim::Matrix3x2;
///
/// let matrix = Matrix3x2::filled_with(0.0);
///
/// assert_eq!(matrix, Matrix3x2 {
/// e11: 0.0, e12: 0.0,
/// e21: 0.0, e22: 0.0,
/// e31: 0.0, e32: 0.0,
/// });
/// ```
pub fn filled_with(element: T) -> Matrix3x2<T> {
return Matrix3x2 {
e11: element, e12: element,
e21: element, e22: element,
e31: element, e32: element,
};
}
}
impl<T> Matrix3x2<T>
where
T: Copy + core::ops::Mul<Output = T> + core::ops::Add<Output = T>
{
/// Computes a dot product between this matrix and a 2D vector.
///
/// # Example
/// ```
/// use keplerian_sim::Matrix3x2;
///
/// let matrix: Matrix3x2<f64> = Matrix3x2 {
/// e11: 1.0, e12: 0.0,
/// e21: 0.0, e22: 1.0,
/// e31: 1.0, e32: 1.0,
/// };
///
/// let vec = (1.0, 2.0);
///
/// let result = matrix.dot_vec(vec);
///
/// assert_eq!(result, (1.0, 2.0, 3.0));
/// ```
pub fn dot_vec(&self, vec: (T, T)) -> (T, T, T) {
return (
vec.0 * self.e11 + vec.1 * self.e12,
vec.0 * self.e21 + vec.1 * self.e22,
vec.0 * self.e31 + vec.1 * self.e32
);
}
}
type Vec3 = (f64, f64, f64);
type Vec2 = (f64, f64);
/// A trait that defines the methods that a Keplerian orbit must implement.
///
/// This trait is implemented by both [`Orbit`] and [`CompactOrbit`].
///
/// # Examples
/// ```
/// use keplerian_sim::{Orbit, OrbitTrait, CompactOrbit};
///
/// fn accepts_orbit(orbit: &impl OrbitTrait) {
/// println!("That's an orbit!");
/// }
///
/// fn main() {
/// let orbit = Orbit::new_default();
/// accepts_orbit(&orbit);
///
/// let compact = CompactOrbit::new_default();
/// accepts_orbit(&compact);
/// }
/// ```
///
/// This example will fail to compile:
///
/// ```compile_fail
/// # use keplerian_sim::{Orbit, OrbitTrait, CompactOrbit};
/// #
/// # fn accepts_orbit(orbit: &impl OrbitTrait) {
/// # println!("That's an orbit!");
/// # }
/// #
/// # fn main() {
/// # let orbit = Orbit::new_default();
/// # accepts_orbit(&orbit);
/// #
/// # let compact = CompactOrbit::new_default();
/// # accepts_orbit(&compact);
/// let not_orbit = (0.0, 1.0);
/// accepts_orbit(¬_orbit);
/// # }
/// ```
pub trait OrbitTrait {
/// Gets the semi-major axis of the orbit.
///
/// In an elliptic orbit, the semi-major axis is the
/// average of the apoapsis and periapsis.
/// This function uses a generalization which uses
/// eccentricity instead.
///
/// This function returns infinity for parabolic orbits,
/// and negative values for hyperbolic orbits.
///
/// Learn more: <https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes>
///
/// # Example
/// ```
/// use keplerian_sim::{Orbit, OrbitTrait};
///
/// let mut orbit = Orbit::new_default();
/// orbit.set_periapsis(50.0);
/// orbit.set_apoapsis_force(100.0);
/// let sma = orbit.get_semi_major_axis();
/// let expected = 75.0;
/// assert!((sma - expected).abs() < 1e-6);
/// ```
fn get_semi_major_axis(&self) -> f64;
/// Gets the semi-minor axis of the orbit.
///
/// In an elliptic orbit, the semi-minor axis is half of the maximum "width"
/// of the orbit.
///
/// Learn more: <https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes>
fn get_semi_minor_axis(&self) -> f64;
/// Gets the semi-latus rectum of the orbit.
///
/// Learn more: <https://en.wikipedia.org/wiki/Ellipse#Semi-latus_rectum>
/// <https://en.wikipedia.org/wiki/Conic_section#Conic_parameters>
fn get_semi_latus_rectum(&self) -> f64;
/// Gets the linear eccentricity of the orbit, in meters.
///
/// In an elliptic orbit, the linear eccentricity is the distance
/// between its center and either of its two foci (focuses).
///
/// # Example
/// ```
/// use keplerian_sim::{Orbit, OrbitTrait};
///
/// let mut orbit = Orbit::new_default();
/// orbit.set_periapsis(50.0);
/// orbit.set_apoapsis_force(100.0);
///
/// // Let's say the periapsis is at x = -50.
/// // The apoapsis would be at x = 100.
/// // The midpoint would be at x = 25.
/// // The parent body - one of its foci - is always at the origin (x = 0).
/// // This means the linear eccentricity is 25.
///
/// let linear_eccentricity = orbit.get_linear_eccentricity();
/// let expected = 25.0;
///
/// assert!((linear_eccentricity - expected).abs() < 1e-6);
/// ```
fn get_linear_eccentricity(&self) -> f64;
/// Gets the apoapsis of the orbit.
/// Returns infinity for parabolic orbits.
/// Returns negative values for hyperbolic orbits.
///
/// # Examples
/// ```
/// use keplerian_sim::{Orbit, OrbitTrait};
///
/// let mut orbit = Orbit::new_default();
/// orbit.set_eccentricity(0.5); // Elliptic
/// assert!(orbit.get_apoapsis() > 0.0);
///
/// orbit.set_eccentricity(1.0); // Parabolic
/// assert!(orbit.get_apoapsis().is_infinite());
///
/// orbit.set_eccentricity(2.0); // Hyperbolic
/// assert!(orbit.get_apoapsis() < 0.0);
/// ```
fn get_apoapsis(&self) -> f64;
/// Sets the apoapsis of the orbit.
/// Errors when the apoapsis is less than the periapsis, or less than zero.
/// If you want a setter that does not error, use `set_apoapsis_force`, which will
/// try its best to interpret what you might have meant, but may have
/// undesirable behavior.
///
/// # Examples
/// ```
/// use keplerian_sim::{Orbit, OrbitTrait};
///
/// let mut orbit = Orbit::new_default();
/// orbit.set_periapsis(50.0);
///
/// assert!(
/// orbit.set_apoapsis(100.0)
/// .is_ok()
/// );
///
/// let result = orbit.set_apoapsis(25.0);
/// assert!(result.is_err());
/// assert!(
/// result.unwrap_err() ==
/// keplerian_sim::ApoapsisSetterError::ApoapsisLessThanPeriapsis
/// );
///
/// let result = orbit.set_apoapsis(-25.0);
/// assert!(result.is_err());
/// assert!(
/// result.unwrap_err() ==
/// keplerian_sim::ApoapsisSetterError::ApoapsisNegative
/// );
/// ```
fn set_apoapsis(&mut self, apoapsis: f64) -> Result<(), ApoapsisSetterError>;
/// Sets the apoapsis of the orbit, with a best-effort attempt at interpreting
/// possibly-invalid values.
/// This function will not error, but may have undesirable behavior:
/// - If the given apoapsis is less than the periapsis but more than zero,
/// the orbit will be flipped and the periapsis will be set to the given apoapsis.
/// - If the given apoapsis is less than zero, the orbit will be hyperbolic
/// instead.
///
/// If these behaviors are undesirable, consider creating a custom wrapper around
/// `set_eccentricity` instead.
fn set_apoapsis_force(&mut self, apoapsis: f64);
/// Gets the transformation matrix needed to tilt a 2D vector into the
/// tilted orbital plane.
///
/// # Example
/// ```
/// use keplerian_sim::{Orbit, OrbitTrait};
///
/// let orbit = Orbit::new_default();
/// let matrix = orbit.get_transformation_matrix();
///
/// assert_eq!(matrix, keplerian_sim::Matrix3x2 {
/// e11: 1.0, e12: 0.0,
/// e21: 0.0, e22: 1.0,
/// e31: 0.0, e32: 0.0,
/// });
/// ```
fn get_transformation_matrix(&self) -> Matrix3x2<f64>;
/// Gets the eccentric anomaly at a given mean anomaly in the orbit.
///
/// The method to get the eccentric anomaly often uses numerical
/// methods like Newton's method, and so it is not very performant.
/// It is recommended to cache this value if you can.
///
/// When the orbit is open (has an eccentricity of at least 1),
/// the [hyperbolic eccentric anomaly](https://space.stackexchange.com/questions/27602/what-is-hyperbolic-eccentric-anomaly-f)
/// would be returned instead.
///
/// The eccentric anomaly is an angular parameter that defines the position
/// of a body that is moving along an elliptic Kepler orbit.
///
/// \- [Wikipedia](https://en.wikipedia.org/wiki/Eccentric_anomaly)
fn get_eccentric_anomaly(&self, mean_anomaly: f64) -> f64;
/// Gets the true anomaly at a given eccentric anomaly in the orbit.
///
/// This function is faster than the function which takes mean anomaly as input,
/// as the eccentric anomaly is hard to calculate.
///
/// **This function returns a NaN for parabolic orbits** because of a
/// divide-by-zero.
fn get_true_anomaly_at_eccentric_anomaly(&self, eccentric_anomaly: f64) -> f64;
/// Gets the true anomaly at a given mean anomaly in the orbit.
///
/// The true anomaly is derived from the eccentric anomaly, which
/// uses numerical methods and so is not very performant.
/// It is recommended to cache this value if you can.
///
/// The true anomaly is the angle between the direction of periapsis
/// and the current position of the body, as seen from the main focus
/// of the ellipse.
///
/// \- [Wikipedia](https://en.wikipedia.org/wiki/True_anomaly)
fn get_true_anomaly(&self, mean_anomaly: f64) -> f64 {
self.get_true_anomaly_at_eccentric_anomaly(
self.get_eccentric_anomaly(mean_anomaly)
)
}
/// Gets the mean anomaly at a given time in the orbit.
///
/// The mean anomaly is the fraction of an elliptical orbit's period
/// that has elapsed since the orbiting body passed periapsis,
/// expressed as an angle which can be used in calculating the position
/// of that body in the classical two-body problem.
///
/// \- [Wikipedia](https://en.wikipedia.org/wiki/Mean_anomaly)
fn get_mean_anomaly_at_time(&self, t: f64) -> f64;
/// Gets the eccentric anomaly at a given time in the orbit.
///
/// The method to get the eccentric anomaly often uses numerical
/// methods like Newton's method, and so it is not very performant.
/// It is recommended to cache this value if you can.
///
/// When the orbit is open (has an eccentricity of at least 1),
/// the [hyperbolic eccentric anomaly](https://space.stackexchange.com/questions/27602/what-is-hyperbolic-eccentric-anomaly-f)
/// would be returned instead.
///
/// The eccentric anomaly is an angular parameter that defines the position
/// of a body that is moving along an elliptic Kepler orbit.
///
/// \- [Wikipedia](https://en.wikipedia.org/wiki/Eccentric_anomaly)
fn get_eccentric_anomaly_at_time(&self, t: f64) -> f64 {
self.get_eccentric_anomaly(
self.get_mean_anomaly_at_time(t)
)
}
/// Gets the true anomaly at a given time in the orbit.
///
/// The true anomaly is derived from the eccentric anomaly, which
/// uses numerical methods and so is not very performant.
/// It is recommended to cache this value if you can.
///
/// The true anomaly is the angle between the direction of periapsis
/// and the current position of the body, as seen from the main focus
/// of the ellipse.
///
/// \- [Wikipedia](https://en.wikipedia.org/wiki/True_anomaly)
fn get_true_anomaly_at_time(&self, t: f64) -> f64 {
self.get_true_anomaly(
self.get_mean_anomaly_at_time(t)
)
}
/// Gets the 3D position at a given angle (true anomaly) in the orbit.
///
/// The angle is expressed in radians, and ranges from 0 to tau.
/// Anything out of range will get wrapped around.
///
/// # Example
/// ```
/// use keplerian_sim::{Orbit, OrbitTrait};
///
/// let mut orbit = Orbit::new_default();
/// orbit.set_periapsis(100.0);
/// orbit.set_eccentricity(0.0);
///
/// let pos = orbit.get_position_at_angle(0.0);
///
/// assert_eq!(pos, (100.0, 0.0, 0.0));
/// ```
fn get_position_at_angle(&self, angle: f64) -> Vec3 {
let (x, y) = self.get_flat_position_at_angle(angle);
self.tilt_flat_position(x, y)
}
/// Gets the 2D position at a given angle (true anomaly) in the orbit.
///
/// This ignores "orbital tilting" parameters, namely the inclination and
/// the longitude of ascending node.
///
/// The angle is expressed in radians, and ranges from 0 to tau.
/// Anything out of range will get wrapped around.
///
/// # Example
/// ```
/// use keplerian_sim::{Orbit, OrbitTrait};
///
/// let mut orbit = Orbit::new_default();
/// orbit.set_periapsis(100.0);
/// orbit.set_eccentricity(0.0);
///
/// let pos = orbit.get_flat_position_at_angle(0.0);
///
/// assert_eq!(pos, (100.0, 0.0));
/// ```
fn get_flat_position_at_angle(&self, angle: f64) -> Vec2 {
let alt = self.get_altitude_at_angle(angle);
return (
alt * angle.cos(),
alt * angle.sin()
);
}
/// Gets the altitude of the body from its parent at a given angle (true anomaly) in the orbit.
///
/// # Example
/// ```
/// use keplerian_sim::{Orbit, OrbitTrait};
///
/// let mut orbit = Orbit::new_default();
/// orbit.set_periapsis(100.0);
/// orbit.set_eccentricity(0.0);
///
/// let altitude = orbit.get_altitude_at_angle(0.0);
///
/// assert_eq!(altitude, 100.0);
/// ```
fn get_altitude_at_angle(&self, angle: f64) -> f64;
/// Gets the altitude of the body from its parent at a given time in the orbit.
///
/// This involves calculating the true anomaly at a given time, and so is not very performant.
/// It is recommended to cache this value when possible.
///
/// For closed orbits (with an eccentricity less than 1), the
/// `t` (time) value ranges from 0 to 1.
/// Anything out of range will get wrapped around.
///
/// For open orbits (with an eccentricity of at least 1), the
/// `t` (time) value is unbounded.
/// Note that due to floating-point imprecision, values of extreme
/// magnitude may not be accurate.
fn get_altitude_at_time(&self, t: f64) -> f64 {
self.get_altitude_at_angle(
self.get_true_anomaly_at_time(t)
)
}
/// Gets the 3D position at a given time in the orbit.
///
/// This involves calculating the true anomaly at a given time,
/// and so is not very performant.
/// It is recommended to cache this value when possible.
///
/// For closed orbits (with an eccentricity less than 1), the
/// `t` (time) value ranges from 0 to 1.
/// Anything out of range will get wrapped around.
///
/// For open orbits (with an eccentricity of at least 1), the
/// `t` (time) value is unbounded.
/// Note that due to floating-point imprecision, values of extreme
/// magnitude may not be accurate.
fn get_position_at_time(&self, t: f64) -> Vec3 {
self.get_position_at_angle(
self.get_true_anomaly_at_time(t)
)
}
/// Gets the 2D position at a given time in the orbit.
///
/// This involves calculating the true anomaly at a given time,
/// and so is not very performant.
/// It is recommended to cache this value when possible.
///
/// This ignores "orbital tilting" parameters, namely the inclination
/// and longitude of ascending node.
///
/// For closed orbits (with an eccentricity less than 1), the
/// `t` (time) value ranges from 0 to 1.
/// Anything out of range will get wrapped around.
///
/// For open orbits (with an eccentricity of at least 1), the
/// `t` (time) value is unbounded.
/// Note that due to floating-point imprecision, values of extreme
/// magnitude may not be accurate.
fn get_flat_position_at_time(&self, t: f64) -> Vec2 {
self.get_flat_position_at_angle(
self.get_true_anomaly_at_time(t)
)
}
/// Tilts a 2D position into 3D, using the orbital parameters.
///
/// This uses the "orbital tilting" parameters, namely the inclination
/// and longitude of ascending node, to tilt that position into the same
/// plane that the orbit resides in.
///
/// This function performs 10x faster in the cached version of the
/// [`Orbit`] struct, as it doesn't need to recalculate the transformation
/// matrix needed to transform 2D vector.
fn tilt_flat_position(&self, x: f64, y: f64) -> Vec3 {
self.get_transformation_matrix().dot_vec((x, y))
}
/// Gets the eccentricity of the orbit.
///
/// The eccentricity of an orbit is a measure of how much it deviates
/// from a perfect circle.
///
/// An eccentricity of 0 means the orbit is a perfect circle.
/// Between 0 and 1, the orbit is elliptic, and has an oval shape.
/// An orbit with an eccentricity of 1 is said to be parabolic.
/// If it's greater than 1, the orbit is hyperbolic.
///
/// For hyperbolic trajectories, the higher the eccentricity, the
/// straighter the path.
///
/// Wikipedia on conic section eccentricity: <https://en.wikipedia.org/wiki/Eccentricity_(mathematics)>
/// (Keplerian orbits are conic sections, so the concepts still apply)
fn get_eccentricity(&self) -> f64;
/// Sets the eccentricity of the orbit.
///
/// The eccentricity of an orbit is a measure of how much it deviates
/// from a perfect circle.
///
/// An eccentricity of 0 means the orbit is a perfect circle.
/// Between 0 and 1, the orbit is elliptic, and has an oval shape.
/// An orbit with an eccentricity of 1 is said to be parabolic.
/// If it's greater than 1, the orbit is hyperbolic.
///
/// For hyperbolic trajectories, the higher the eccentricity, the
/// straighter the path.
///
/// Wikipedia on conic section eccentricity: <https://en.wikipedia.org/wiki/Eccentricity_(mathematics)>
/// (Keplerian orbits are conic sections, so the concepts still apply)
fn set_eccentricity(&mut self, eccentricity: f64);
/// Gets the periapsis of the orbit.
///
/// The periapsis of an orbit is the distance at the closest point
/// to the parent body.
///
/// More simply, this is the "minimum altitude" of an orbit.
///
/// Wikipedia: <https://en.wikipedia.org/wiki/Apsis>
fn get_periapsis(&self) -> f64;
/// Sets the periapsis of the orbit.
///
/// The periapsis of an orbit is the distance at the closest point
/// to the parent body.
///
/// More simply, this is the "minimum altitude" of an orbit.
///
/// Wikipedia: <https://en.wikipedia.org/wiki/Apsis>
fn set_periapsis(&mut self, periapsis: f64);
/// Gets the inclination of the orbit in radians.
///
/// The inclination of an orbit is the angle between the plane of the
/// orbit and the reference plane.
///
/// In simple terms, it tells you how "tilted" the orbit is.
///
/// Wikipedia: <https://en.wikipedia.org/wiki/Orbital_inclination>
fn get_inclination(&self) -> f64;
/// Sets the inclination of the orbit in radians.
///
/// The inclination of an orbit is the angle between the plane of the
/// orbit and the reference plane.
///
/// In simple terms, it tells you how "tilted" the orbit is.
///
/// Wikipedia: <https://en.wikipedia.org/wiki/Orbital_inclination>
fn set_inclination(&mut self, inclination: f64);
/// Gets the argument of periapsis of the orbit in radians.
///
/// Wikipedia:
/// The argument of periapsis is the angle from the body's
/// ascending node to its periapsis, measured in the direction of
/// motion.
/// <https://en.wikipedia.org/wiki/Argument_of_periapsis>
///
/// In simple terms, it tells you how, and in which direction,
/// the orbit "tilts".
fn get_arg_pe(&self) -> f64;
/// Sets the argument of periapsis of the orbit in radians.
///
/// Wikipedia:
/// The argument of periapsis is the angle from the body's
/// ascending node to its periapsis, measured in the direction of
/// motion.
/// <https://en.wikipedia.org/wiki/Argument_of_periapsis>
///
/// In simple terms, it tells you how, and in which direction,
/// the orbit "tilts".
fn set_arg_pe(&mut self, arg_pe: f64);
/// Gets the longitude of ascending node of the orbit in radians.
///
/// Wikipedia:
/// The longitude of ascending node is the angle from a specified
/// reference direction, called the origin of longitude, to the direction
/// of the ascending node, as measured in a specified reference plane.
/// <https://en.wikipedia.org/wiki/Longitude_of_the_ascending_node>
///
/// In simple terms, it tells you how, and in which direction,
/// the orbit "tilts".
fn get_long_asc_node(&self) -> f64;
/// Sets the longitude of ascending node of the orbit in radians.
///
/// Wikipedia:
/// The longitude of ascending node is the angle from a specified
/// reference direction, called the origin of longitude, to the direction
/// of the ascending node, as measured in a specified reference plane.
/// <https://en.wikipedia.org/wiki/Longitude_of_the_ascending_node>
///
/// In simple terms, it tells you how, and in which direction,
/// the orbit "tilts".
fn set_long_asc_node(&mut self, long_asc_node: f64);
/// Gets the mean anomaly of the orbit at a certain epoch.
///
/// For elliptic orbits, it's measured in radians and so are bounded
/// between 0 and tau; anything out of range will get wrapped around.
/// For hyperbolic orbits, it's unbounded.
///
/// Wikipedia:
/// The mean anomaly at epoch, `M_0`, is defined as the instantaneous mean
/// anomaly at a given epoch, `t_0`.
/// <https://en.wikipedia.org/wiki/Mean_anomaly#Mean_anomaly_at_epoch>
///
/// In simple terms, this modifies the "offset" of the orbit progression.
fn get_mean_anomaly_at_epoch(&self) -> f64;
/// Sets the mean anomaly of the orbit at a certain epoch.
///
/// For elliptic orbits, it's measured in radians and so are bounded
/// between 0 and tau; anything out of range will get wrapped around.
/// For hyperbolic orbits, it's unbounded.
///
/// Wikipedia:
/// The mean anomaly at epoch, `M_0`, is defined as the instantaneous mean
/// anomaly at a given epoch, `t_0`.
/// <https://en.wikipedia.org/wiki/Mean_anomaly#Mean_anomaly_at_epoch>
///
/// In simple terms, this modifies the "offset" of the orbit progression.
fn set_mean_anomaly_at_epoch(&mut self, mean_anomaly: f64);
}
/// An error to describe why setting the periapsis of an orbit failed.
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub enum ApoapsisSetterError {
/// ### Attempt to set apoapsis to a value less than periapsis.
/// By definition, an orbit's apoapsis is the highest point in the orbit,
/// and its periapsis is the lowest point in the orbit.
/// Therefore, it doesn't make sense for the apoapsis to be lower than the periapsis.
ApoapsisLessThanPeriapsis,
/// ### Attempt to set apoapsis to a negative value.
/// By definition, the apoapsis is the highest point in the orbit.
/// You can't be a negative distance away from the center of mass of the parent body.
/// Therefore, it doesn't make sense for the apoapsis to be lower than zero.
ApoapsisNegative
}
#[cfg(test)]
mod tests;
#[inline]
fn keplers_equation(mean_anomaly: f64, eccentric_anomaly: f64, eccentricity: f64) -> f64 {
return eccentric_anomaly - (eccentricity * eccentric_anomaly.sin()) - mean_anomaly;
}
#[inline]
fn keplers_equation_derivative(eccentric_anomaly: f64, eccentricity: f64) -> f64 {
return 1.0 - (eccentricity * eccentric_anomaly.cos());
}
#[inline]
fn keplers_equation_second_derivative(eccentric_anomaly: f64, eccentricity: f64) -> f64 {
return eccentricity * eccentric_anomaly.sin();
}
/// Get the hyperbolic sine and cosine of a number.
///
/// Usually faster than calling `x.sinh()` and `x.cosh()` separately.
///
/// Returns a tuple which contains:
/// - 0: The hyperbolic sine of the number.
/// - 1: The hyperbolic cosine of the number.
fn sinhcosh(x: f64) -> (f64, f64) {
let e_x = x.exp();
let e_neg_x = (-x).exp();
return (
(e_x - e_neg_x) * 0.5,
(e_x + e_neg_x) * 0.5
);
}
/// Solve a cubic equation to get its real root.
///
/// The cubic equation is in the form of:
/// ax^3 + bx^2 + cx + d
///
/// The cubic equation is assumed to be monotone.
/// If it isn't monotone (i.e., the discriminant
/// is negative), it may return an incorrect value
/// or NaN.
fn solve_monotone_cubic(a: f64, b: f64, c: f64, d: f64) -> f64 {
// Normalize coefficients so that a = 1
// ax^3 + bx^2 + cx + d
// ...where b, c, d are the normalized coefficients,
// and a = 1
let b = b / a;
let c = c / a;
let d = d / a;
// Depress the cubic equation
// t^3 + pt + q = 0
// ...where:
// p = (3ac - b^2) / (3a^2)
// q = (2b^3 - 9abc + 27da^2) / (27a^3)
// ...since a = 1, we can simplify them to:
// p = (3c - b^2) / 3
// q = (2b^3 - 9bc + 27d) / 27
let b_sq = b * b;
let p = (3.0 * c - b_sq) / 3.0;
let q = (2.0 * b_sq * b - 9.0 * b * c + 27.0 * d) / 27.0;
let q_div_two = q / 2.0;
let p_div_three = p / 3.0;
let p_div_three_cubed = p_div_three * p_div_three * p_div_three;
let discriminant =
q_div_two * q_div_two +
p_div_three_cubed;
if discriminant < 0.0 {
// Function is not monotone
return f64::NAN;
}
let t = {
let sqrt_discriminant = discriminant.sqrt();
let neg_q_div_two = -q_div_two;
let u = (neg_q_div_two + sqrt_discriminant).cbrt();
let v = (neg_q_div_two - sqrt_discriminant).cbrt();
u + v
};
// x_i = t_i - b / 3a
// here, a = 1
return t - b / 3.0;
}
mod generated_sinh_approximator;