keplerian_sim/compact_orbit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
use core::f64::consts::{PI, TAU};
use crate::{
keplers_equation, keplers_equation_derivative, keplers_equation_second_derivative, sinhcosh, solve_monotone_cubic, ApoapsisSetterError, Matrix3x2, Orbit, OrbitTrait
};
/// A minimal struct representing a Keplerian orbit.
///
/// This struct minimizes memory footprint by not caching variables.
/// Because of this, calculations can be slower than caching those variables.
/// For this reason, you might consider using the `Orbit` struct instead.
///
/// # Example
/// ```
/// use keplerian_sim::{CompactOrbit, OrbitTrait};
///
/// let orbit = CompactOrbit::new(
/// // Initialize using eccentricity, periapsis, inclination,
/// // argument of periapsis, longitude of ascending node,
/// // and mean anomaly at epoch
///
/// // Eccentricity
/// 0.0,
///
/// // Periapsis
/// 1.0,
///
/// // Inclination
/// 0.0,
///
/// // Argument of periapsis
/// 0.0,
///
/// // Longitude of ascending node
/// 0.0,
///
/// // Mean anomaly at epoch
/// 0.0,
/// );
///
/// let orbit = CompactOrbit::with_apoapsis(
/// // Initialize using apoapsis in place of eccentricity
///
/// // Apoapsis
/// 2.0,
///
/// // Periapsis
/// 1.0,
///
/// // Inclination
/// 0.0,
///
/// // Argument of periapsis
/// 0.0,
///
/// // Longitude of ascending node
/// 0.0,
///
/// // Mean anomaly at epoch
/// 0.0,
/// );
/// ```
/// See [Orbit::new] and [Orbit::with_apoapsis] for more information.
#[derive(Clone, Debug)]
pub struct CompactOrbit {
/// The eccentricity of the orbit.
/// e < 1: ellipse
/// e = 1: parabola
/// e > 1: hyperbola
///
/// See more: <https://en.wikipedia.org/wiki/Orbital_eccentricity>
pub eccentricity: f64,
/// The periapsis of the orbit, in meters.
///
/// The periapsis of an orbit is the distance at the closest point
/// to the parent body.
///
/// More simply, this is the "minimum altitude" of an orbit.
pub periapsis: f64,
/// The inclination of the orbit, in radians.
/// The inclination of an orbit is the angle between the plane of the
/// orbit and the reference plane.
///
/// In simple terms, it tells you how "tilted" the orbit is.
pub inclination: f64,
/// The argument of periapsis of the orbit, in radians.
///
/// Wikipedia:
/// The argument of periapsis is the angle from the body's
/// ascending node to its periapsis, measured in the direction of
/// motion.
/// <https://en.wikipedia.org/wiki/Argument_of_periapsis>
///
/// In simple terms, it tells you how, and in which direction,
/// the orbit "tilts".
pub arg_pe: f64,
/// The longitude of ascending node of the orbit, in radians.
///
/// Wikipedia:
/// The longitude of ascending node is the angle from a specified
/// reference direction, called the origin of longitude, to the direction
/// of the ascending node, as measured in a specified reference plane.
/// <https://en.wikipedia.org/wiki/Longitude_of_the_ascending_node>
///
/// In simple terms, it tells you how, and in which direction,
/// the orbit "tilts".
pub long_asc_node: f64,
/// The mean anomaly at orbit epoch, in radians.
///
/// For elliptic orbits, it's measured in radians and so are bounded
/// between 0 and tau; anything out of range will get wrapped around.
/// For hyperbolic orbits, it's unbounded.
///
/// Wikipedia:
/// The mean anomaly at epoch, `M_0`, is defined as the instantaneous mean
/// anomaly at a given epoch, `t_0`.
/// <https://en.wikipedia.org/wiki/Mean_anomaly#Mean_anomaly_at_epoch>
///
/// In simple terms, this modifies the "offset" of the orbit progression.
pub mean_anomaly: f64,
}
// Initialization and cache management
impl CompactOrbit {
/// Creates a new `CompactOrbit` instance with the given parameters.
///
/// Note: This function uses eccentricity instead of apoapsis.
/// If you want to provide an apoapsis instead, consider using the
/// [`CompactOrbit::with_apoapsis`] function instead.
///
/// ### Parameters
/// - `eccentricity`: The eccentricity of the orbit.
/// - `periapsis`: The periapsis of the orbit, in meters.
/// - `inclination`: The inclination of the orbit, in radians.
/// - `arg_pe`: The argument of periapsis of the orbit, in radians.
/// - `long_asc_node`: The longitude of ascending node of the orbit, in radians.
/// - `mean_anomaly`: The mean anomaly of the orbit, in radians.
pub fn new(
eccentricity: f64, periapsis: f64,
inclination: f64, arg_pe: f64, long_asc_node: f64,
mean_anomaly: f64
) -> CompactOrbit {
return CompactOrbit {
eccentricity, periapsis,
inclination, arg_pe, long_asc_node,
mean_anomaly,
};
}
/// Creates a new `CompactOrbit` instance with the given parameters.
///
/// Note: This function uses apoapsis instead of eccentricity.
/// Because of this, it's not recommended to initialize
/// parabolic or hyperbolic 'orbits' with this function.
/// If you're looking to initialize a parabolic or hyperbolic
/// trajectory, consider using the [`CompactOrbit::new`] function instead.
///
/// ### Parameters
/// - `apoapsis`: The apoapsis of the orbit, in meters.
/// - `periapsis`: The periapsis of the orbit, in meters.
/// - `inclination`: The inclination of the orbit, in radians.
/// - `arg_pe`: The argument of periapsis of the orbit, in radians.
/// - `long_asc_node`: The longitude of ascending node of the orbit, in radians.
/// - `mean_anomaly`: The mean anomaly of the orbit, in radians.
pub fn with_apoapsis(
apoapsis: f64, periapsis: f64,
inclination: f64, arg_pe: f64, long_asc_node: f64,
mean_anomaly: f64
) -> CompactOrbit {
let eccentricity = (apoapsis - periapsis ) / (apoapsis + periapsis);
return CompactOrbit::new(eccentricity, periapsis, inclination, arg_pe, long_asc_node, mean_anomaly);
}
/// Creates a unit orbit.
///
/// The unit orbit is a perfect circle of radius 1 and no "tilt".
pub fn new_default() -> CompactOrbit {
return Self::new(0.0, 1.0, 0.0, 0.0, 0.0, 0.0);
}
}
/// A constant used to get the initial seed for the eccentric anomaly.
///
/// It's very arbitrary, but according to some testing, a value just
/// below 1 works better than exactly 1.
///
/// Source:
/// "Two fast and accurate routines for solving the elliptic Kepler
/// equation for all values of the eccentricity and mean anomaly"
/// by Daniele Tommasini and David N. Olivieri,
/// section 2.1.2, 'The "rational seed"'
///
/// https://doi.org/10.1051/0004-6361/202141423
const B: f64 = 0.999999;
/// A constant used for the Laguerre method.
///
/// The paper "An improved algorithm due to
/// laguerre for the solution of Kepler's equation."
/// says:
///
/// > Similar experimentation has been done with values of n both greater and smaller
/// than n = 5. The speed of convergence seems to be very insensitive to the choice of n.
/// No value of n was found to yield consistently better convergence properties than the
/// choice of n = 5 though specific cases were found where other choices would give
/// faster convergence.
const N_U32: u32 = 5;
/// A constant used for the Laguerre method.
///
/// The paper "An improved algorithm due to
/// laguerre for the solution of Kepler's equation."
/// says:
///
/// > Similar experimentation has been done with values of n both greater and smaller
/// than n = 5. The speed of convergence seems to be very insensitive to the choice of n.
/// No value of n was found to yield consistently better convergence properties than the
/// choice of n = 5 though specific cases were found where other choices would give
/// faster convergence.
const N_F64: f64 = 5.0;
/// The maximum number of iterations for numerical approach methods.
///
/// This is used to prevent infinite loops in case the method fails to converge.
const NUMERIC_MAX_ITERS: u32 = 1000;
const PI_SQUARED: f64 = PI * PI;
impl CompactOrbit {
// "An improved algorithm due to laguerre for the solution of Kepler's equation."
// by Bruce A. Conway
// https://doi.org/10.1007/bf01230852
fn get_eccentric_anomaly_elliptic(&self, mut mean_anomaly: f64) -> f64 {
let mut sign = 1.0;
// Use the symmetry and periodicity of the eccentric anomaly
// Equation 2 from the paper
// "Two fast and accurate routines for solving
// the elliptic Kepler equation for all values
// of the eccentricity and mean anomaly"
mean_anomaly %= TAU;
if mean_anomaly > PI {
// return self.get_eccentric_anomaly_elliptic(mean_anomaly - TAU);
mean_anomaly -= TAU;
}
if mean_anomaly < 0.0 {
// return -self.get_eccentric_anomaly_elliptic(-mean_anomaly);
mean_anomaly = -mean_anomaly;
sign = -1.0;
}
// Starting guess
// Section 2.1.2, 'The "rational seed"',
// equation 19, from the paper
// "Two fast and accurate routines for solving
// the elliptic Kepler equation for all values
// of the eccentricity and mean anomaly"
//
// E_0 = M + (4beM(pi - M)) / (8eM + 4e(e-pi) + pi^2)
// where:
// e = eccentricity
// M = mean anomaly
// pi = the constant PI
// b = the constant B
let mut eccentric_anomaly =
mean_anomaly +
(4.0 * self.eccentricity * B * mean_anomaly * (PI - mean_anomaly)) /
(
8.0 * self.eccentricity * mean_anomaly +
4.0 * self.eccentricity * (self.eccentricity - PI) +
PI_SQUARED
);
// Laguerre's method
//
// i = 2, 3, ..., n
//
// D = sqrt((n-1)^2(f'(x_i))^2 - n(n-1)f(x_i)f''(x_i))
//
// x_i+1 = x_i - (nf(x_i) / (f'(x_i) +/- D))
// ...where the "+/-" is chosen to so that abs(denominator) is maximized
for _ in 2..N_U32 {
let f = keplers_equation(mean_anomaly, eccentric_anomaly, self.eccentricity);
let fp = keplers_equation_derivative(eccentric_anomaly, self.eccentricity);
let fpp = keplers_equation_second_derivative(eccentric_anomaly, self.eccentricity);
let n = N_F64;
let n_minus_1 = n - 1.0;
let d = ((n_minus_1 * n_minus_1) * fp * fp - n * n_minus_1 * f * fpp).abs().sqrt().copysign(fp);
let denominator = n * f / (fp + d.max(1e-30));
eccentric_anomaly -= denominator;
if denominator.abs() < 1e-30 || !denominator.is_finite() {
// dangerously close to div-by-zero, break out
break;
}
}
return eccentric_anomaly * sign;
}
/// Get an initial guess for the hyperbolic eccentric anomaly of an orbit.
///
/// Returns a tuple containing the initial guess and the approximate error of the guess.
///
/// From the paper:
/// "A new method for solving the hyperbolic Kepler equation"
/// by Baisheng Wu et al.
/// Quote:
/// "we divide the hyperbolic eccentric anomaly interval into two parts:
/// a finite interval and an infinite interval. For the finite interval,
/// we apply a piecewise Pade approximation to establish an initial
/// approximate solution of HKE. For the infinite interval, an analytical
/// initial approximate solution is constructed."
pub fn get_approx_hyp_ecc_anomaly(&self, mean_anomaly: f64) -> f64 {
let sign = mean_anomaly.signum();
let mean_anomaly = mean_anomaly.abs();
const SINH_5: f64 = 74.20321057778875;
// (Paragraph after Eq. 5 in the aforementioned paper)
// The [mean anomaly] interval [0, e_c sinh(5) - 5) can
// be separated into fifteen subintervals corresponding to
// those intervals of F in [0, 5), see Eq. (4).
return sign * if mean_anomaly < self.eccentricity * SINH_5 - 5.0 {
// We use the Pade approximation of sinh of order
// [3 / 2], in `crate::generated_sinh_approximator`.
// We can then rearrange the equation to a cubic
// equation in terms of (F - a) and solve it.
//
// To quote the paper:
// Replacing sinh(F) in [the hyperbolic Kepler
// equation] with its piecewise Pade approximation
// defined in Eq. (4) [`crate::generated_sinh_approximator`]
// yields:
// e_c P(F) - F = M_h (6)
//
// Eq. (6) can be written as a cubic equation in u = F - a, as
// (e_c p_3 - q_2)u^3 +
// (e_c p_2 - (M_h + a)q_2 - q_1) u^2 +
// (e_c p_1 - (M_h + a)q_1 - 1)u +
// e_c s - M_h - a = 0 (7)
//
// Solving Eq. (7) and picking the real root F = F_0 in the
// corresponding subinterval results in an initial approximate
// solution to [the hyperbolic Kepler equation].
//
// For context:
// - `e_c` is eccentricity
// - `p_*`, `q_*`, `a`, and `s` is derived from the Pade approximation
// arguments, which can be retrieved using the
// `generated_sinh_approximator::get_sinh_approx_params` function
// - `M_h` is the mean anomaly
// - `F` is the eccentric anomaly
use crate::generated_sinh_approximator::get_sinh_approx_params;
let params = get_sinh_approx_params(mean_anomaly);
// We first get the value of each coefficient in the cubic equation:
// Au^3 + Bu^2 + Cu + D = 0
let mean_anom_plus_a = mean_anomaly + params.a;
let coeff_a = self.eccentricity * params.p_3 - params.q_2;
let coeff_b = self.eccentricity * params.p_2 - mean_anom_plus_a * params.q_2 - params.q_1;
let coeff_c = self.eccentricity * params.p_1 - mean_anom_plus_a * params.q_1 - 1.0;
let coeff_d = self.eccentricity * params.s - mean_anomaly - params.a;
// Then we solve it to get the value of u = F - a
let u = solve_monotone_cubic(coeff_a, coeff_b, coeff_c, coeff_d);
u + params.a
} else {
// Equation 13
// A *very* rough guess, with an error that may exceed 1%.
let rough_guess = (2.0 * mean_anomaly / self.eccentricity).ln();
/*
A fourth-order Schröder iteration of the second kind
is performed to create a better guess.
...Apparently it's not a well-known thing, but the aforementioned paper
referenced this other paper about Schröder iterations:
https://doi.org/10.1016/j.cam.2019.02.035
To do the Schröder iteration, we need to compute a delta value
to be added to the rough guess. Part of Equation 15 from the paper is below.
delta = (
6 * [e_c^2 / (4 * M_h) + F_a] / (e_c * c_a - 1) +
3 * [e_c * s_a / (e_c * c_a - 1)]{[e_c^2 / (4 * M_h) + F_a] / (e_c * c_a - 1)}^2
) / (
6 +
6 * [e_c * s_a / (e_c * c_a - 1)]{[e_c^2 / (4 * M_h) + F_a] / (e_c * c_a - 1)} +
[e_c * c_a / (e_c * c_a - 1)]{[e_c^2 / (4 * M_h) + F_a] / (e_c * c_a - 1)}^2
)
...where:
e_c = eccentricity
F_a = rough guess
c_a = cosh(F_a) = 0.5 * [2 * M_h / e_c + e_c / (2 * M_h)],
s_a = sinh(F_a) = 0.5 * [2 * M_h / e_c - e_c / (2 * M_h)]
Although the equation may look intimidating, there are a lot of repeated values.
We can simplify the equation by extracting the repeated values.
Let:
alpha = e_c^2 / (4 * M_h) + F_a
beta = 1 / (e_c * c_a - 1)
gamma = alpha * beta
The equation gets simplified into:
delta = (
6 * gamma +
3 * e_c * s_a * beta * gamma^2
) / (
6 +
6 * e_c * s_a * beta * gamma +
e_c * c_a * beta * gamma^2
)
Then we can refine the rough guess into the initial guess:
F_0 = F_a + delta
*/
let (c_a, s_a) = {
// c_a and s_a has a lot of repeated values, so we can
// optimize by calculating them together.
// c_a, s_a = 0.5 * [2 * M_h / e_c +- e_c / (2 * M_h)]
//
// define "left" = 2 * M_h / e_c
// define "right" = e_c / (2 * M_h)
let left = 2.0 * mean_anomaly / self.eccentricity;
let right = self.eccentricity / (2.0 * mean_anomaly);
(0.5 * (left + right), 0.5 * (left - right))
};
let alpha =
self.eccentricity * self.eccentricity /
(4.0 * mean_anomaly) + rough_guess;
let beta = (self.eccentricity * c_a - 1.0).recip();
let gamma = alpha * beta;
let gamma_sq = gamma * gamma;
let delta = (
6.0 * alpha * beta +
3.0 * (self.eccentricity * s_a * beta) * gamma_sq
) / (
6.0 +
6.0 * (self.eccentricity * s_a * beta) * gamma +
(self.eccentricity * c_a * beta) * gamma_sq
);
rough_guess + delta
};
}
/// From the paper:
/// "A new method for solving the hyperbolic Kepler equation"
/// by Baisheng Wu et al.
fn get_eccentric_anomaly_hyperbolic(&self, mean_anomaly: f64) -> f64 {
let mut ecc_anom = self.get_approx_hyp_ecc_anomaly(mean_anomaly);
/*
Do a fourth-order Schröder iteration of the second kind
Equation 25 of "A new method for solving the hyperbolic Kepler equation"
by Baisheng Wu et al.
Slightly restructured:
F_1^(4) = F_0 - (
(6h/h' - 3h^2 h'' / h'^3) /
(6 - 6h h'' / h'^2 + h^2 h'''/h'^3)
)
...where:
e_c = eccentricity
F_0 = initial guess
h = e_c sinh(F_0) - F_0 - M_h
h' = e_c cosh(F_0) - 1
h'' = e_c sinh(F_0)
= h + F_0 + M_h
h'''= h' + 1
Rearranging for efficiency:
h'''= e_c cosh(F_0)
h' = h''' - 1
h'' = e_c sinh(F_0)
h = h'' - F_0 - M_h
Factoring out 1/h':
let r = 1 / h'
F_1^(4) = F_0 - (
(6hr - 3h^2 h'' r^3) /
(6 - 6h h'' r^2 + h^2 h''' r^3)
)
Since sinh and cosh are very similar algebraically,
it may be better to calculate them together.
Paper about Schröder iterations:
https://doi.org/10.1016/j.cam.2019.02.035
*/
for _ in 0..NUMERIC_MAX_ITERS {
let (sinh_eca, cosh_eca) = sinhcosh(ecc_anom);
let hppp = self.eccentricity * cosh_eca;
let hp = hppp - 1.0;
let hpp = self.eccentricity * sinh_eca;
let h = hpp - ecc_anom - mean_anomaly;
let h_sq = h * h;
let r = hp.recip();
let r_sq = r * r;
let r_cub = r_sq * r;
let denominator =
6.0 - 6.0 * h * hpp * r_sq + h_sq * hppp * r_cub;
if denominator.abs() < 1e-30 || !denominator.is_finite() {
// dangerously close to div-by-zero, break out
#[cfg(debug_assertions)]
eprintln!("Hyperbolic eccentric anomaly solver: denominator is too small or not finite");
break;
}
let numerator = 6.0 * h * r - 3.0 * h_sq * hpp * r_cub;
let delta = numerator / denominator;
ecc_anom -= delta;
if delta.abs() < 1e-12 {
break;
}
}
return ecc_anom;
}
}
impl OrbitTrait for CompactOrbit {
fn get_semi_major_axis(&self) -> f64 {
return self.periapsis / (1.0 - self.eccentricity);
}
fn get_semi_minor_axis(&self) -> f64 {
let semi_major_axis = self.get_semi_major_axis();
let eccentricity_squared = self.eccentricity * self.eccentricity;
return semi_major_axis * (1.0 - eccentricity_squared).abs().sqrt();
}
fn get_linear_eccentricity(&self) -> f64 {
return self.get_semi_major_axis() - self.periapsis;
}
fn get_apoapsis(&self) -> f64 {
if self.eccentricity == 1.0 {
return f64::INFINITY;
} else {
return self.get_semi_major_axis() * (1.0 + self.eccentricity);
}
}
fn set_apoapsis(&mut self, apoapsis: f64) -> Result<(), ApoapsisSetterError> {
if apoapsis < 0.0 {
return Err(ApoapsisSetterError::ApoapsisNegative);
} else if apoapsis < self.periapsis {
return Err(ApoapsisSetterError::ApoapsisLessThanPeriapsis);
}
self.eccentricity = (apoapsis - self.periapsis) / (apoapsis + self.periapsis);
return Ok(());
}
fn set_apoapsis_force(&mut self, apoapsis: f64) {
let mut apoapsis = apoapsis;
if apoapsis < self.periapsis && apoapsis > 0.0 {
(apoapsis, self.periapsis) = (self.periapsis, apoapsis);
}
self.eccentricity = (apoapsis - self.periapsis) / (apoapsis + self.periapsis);
}
fn get_transformation_matrix(&self) -> Matrix3x2<f64> {
let mut matrix = Matrix3x2::<f64>::filled_with(0.0);
{
let (sin_inc, cos_inc) = self.inclination.sin_cos();
let (sin_arg_pe, cos_arg_pe) = self.arg_pe.sin_cos();
let (sin_lan, cos_lan) = self.long_asc_node.sin_cos();
// https://downloads.rene-schwarz.com/download/M001-Keplerian_Orbit_Elements_to_Cartesian_State_Vectors.pdf
matrix.e11 = cos_arg_pe * cos_lan - sin_arg_pe * cos_inc * sin_lan;
matrix.e12 = -(sin_arg_pe * cos_lan + cos_arg_pe * cos_inc * sin_lan);
matrix.e21 = cos_arg_pe * sin_lan + sin_arg_pe * cos_inc * cos_lan;
matrix.e22 = cos_arg_pe * cos_inc * cos_lan - sin_arg_pe * sin_lan;
matrix.e31 = sin_arg_pe * sin_inc;
matrix.e32 = cos_arg_pe * sin_inc;
}
return matrix;
}
fn get_eccentric_anomaly(&self, mean_anomaly: f64) -> f64 {
if self.eccentricity < 1.0 {
return self.get_eccentric_anomaly_elliptic(mean_anomaly);
} else {
return self.get_eccentric_anomaly_hyperbolic(mean_anomaly);
}
}
fn get_true_anomaly_at_eccentric_anomaly(&self, eccentric_anomaly: f64) -> f64 {
if self.eccentricity < 1.0 {
// https://en.wikipedia.org/wiki/True_anomaly#From_the_eccentric_anomaly
let eccentricity = self.eccentricity;
let beta = eccentricity / (1.0 + (1.0 - eccentricity * eccentricity).sqrt());
return eccentric_anomaly + 2.0 *
(beta * eccentric_anomaly.sin() / (1.0 - beta * eccentric_anomaly.cos()))
.atan();
} else {
// idk copilot got this
return 2.0 *
((self.eccentricity + 1.0) / (self.eccentricity - 1.0)).sqrt().atan() *
eccentric_anomaly.tanh();
}
}
fn get_semi_latus_rectum(&self) -> f64 {
if self.eccentricity == 1.0 {
return 2.0 * self.periapsis;
}
return self.get_semi_major_axis() *
(1.0 - self.eccentricity * self.eccentricity);
}
fn get_altitude_at_angle(&self, true_anomaly: f64) -> f64 {
return (
self.get_semi_latus_rectum() /
(1.0 + self.eccentricity * true_anomaly.cos())
).abs();
}
fn get_mean_anomaly_at_time(&self, t: f64) -> f64 {
let time = t.rem_euclid(1.0);
return time * TAU + self.mean_anomaly;
}
fn get_eccentricity (&self) -> f64 { self.eccentricity }
fn get_periapsis (&self) -> f64 { self.periapsis }
fn get_inclination (&self) -> f64 { self.inclination }
fn get_arg_pe (&self) -> f64 { self.arg_pe }
fn get_long_asc_node (&self) -> f64 { self.long_asc_node }
fn get_mean_anomaly_at_epoch(&self) -> f64 { self.mean_anomaly }
fn set_eccentricity (&mut self, value: f64) { self.eccentricity = value }
fn set_periapsis (&mut self, value: f64) { self.periapsis = value }
fn set_inclination (&mut self, value: f64) { self.inclination = value }
fn set_arg_pe (&mut self, value: f64) { self.arg_pe = value }
fn set_long_asc_node (&mut self, value: f64) { self.long_asc_node = value }
fn set_mean_anomaly_at_epoch(&mut self, value: f64) { self.mean_anomaly = value }
}
impl From<Orbit> for CompactOrbit {
fn from(cached: Orbit) -> Self {
return Self {
eccentricity: cached.get_eccentricity(),
periapsis: cached.get_periapsis(),
inclination: cached.get_inclination(),
arg_pe: cached.get_arg_pe(),
long_asc_node: cached.get_long_asc_node(),
mean_anomaly: cached.get_mean_anomaly_at_epoch()
};
}
}
impl Orbit {
/// Compactify the cached orbit into a compact orbit to increase memory efficiency
/// while sacrificing calculation speed.
pub fn compactify(self) -> CompactOrbit {
CompactOrbit::from(self)
}
}