Crate kdtree_simd
source · [−]Expand description
kdtree
K-dimensional tree for Rust (bucket point-region implementation)
Usage
use kdtree::KdTree;
use kdtree::ErrorKind;
use kdtree::distance::squared_euclidean;
let a: ([f64; 2], usize) = ([0f64, 0f64], 0);
let b: ([f64; 2], usize) = ([1f64, 1f64], 1);
let c: ([f64; 2], usize) = ([2f64, 2f64], 2);
let d: ([f64; 2], usize) = ([3f64, 3f64], 3);
let dimensions = 2;
let mut kdtree = KdTree::new(dimensions);
kdtree.add(&a.0, a.1).unwrap();
kdtree.add(&b.0, b.1).unwrap();
kdtree.add(&c.0, c.1).unwrap();
kdtree.add(&d.0, d.1).unwrap();
assert_eq!(kdtree.size(), 4);
assert_eq!(
kdtree.nearest(&a.0, 0, &squared_euclidean).unwrap(),
vec![]
);
assert_eq!(
kdtree.nearest(&a.0, 1, &squared_euclidean).unwrap(),
vec![(0f64, &0)]
);
assert_eq!(
kdtree.nearest(&a.0, 2, &squared_euclidean).unwrap(),
vec![(0f64, &0), (2f64, &1)]
);
assert_eq!(
kdtree.nearest(&a.0, 3, &squared_euclidean).unwrap(),
vec![(0f64, &0), (2f64, &1), (8f64, &2)]
);
assert_eq!(
kdtree.nearest(&a.0, 4, &squared_euclidean).unwrap(),
vec![(0f64, &0), (2f64, &1), (8f64, &2), (18f64, &3)]
);
assert_eq!(
kdtree.nearest(&a.0, 5, &squared_euclidean).unwrap(),
vec![(0f64, &0), (2f64, &1), (8f64, &2), (18f64, &3)]
);
assert_eq!(
kdtree.nearest(&b.0, 4, &squared_euclidean).unwrap(),
vec![(0f64, &1), (2f64, &0), (2f64, &2), (8f64, &3)]
);
Re-exports
Modules
Defines different distance metrics, in simplest case it defines the
euclidean distance which is no more than the square root of the sum of the
squares of the distances in each dimension.