1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
// Axel '0vercl0k' Souchet - February 25 2024
//! This has all the parsing logic for parsing kernel crash-dumps.
use core::slice;
use std::cell::RefCell;
use std::cmp::min;
use std::collections::HashMap;
use std::fmt::Debug;
use std::fs::File;
use std::ops::Range;
use std::path::Path;
use std::{io, mem};
use crate::bits::Bits;
use crate::error::{PxeNotPresent, Result};
use crate::gxa::Gxa;
use crate::map::{MappedFileReader, Reader};
use crate::structs::{
read_struct, BmpHeader64, Context, DumpType, ExceptionRecord64, FullRdmpHeader64, Header64,
KdDebuggerData64, KernelRdmpHeader64, LdrDataTableEntry, ListEntry, Page, PfnRange,
PhysmemDesc, PhysmemMap, PhysmemRun, UnicodeString, DUMP_HEADER64_EXPECTED_SIGNATURE,
DUMP_HEADER64_EXPECTED_VALID_DUMP,
};
use crate::{AddrTranslationError, Gpa, Gva, KdmpParserError, Pfn, Pxe};
fn gpa_from_bitmap(bitmap_idx: u64, bit_idx: usize) -> Option<Gpa> {
let pfn = Pfn::new(
bitmap_idx
.checked_mul(8)?
.checked_add(bit_idx.try_into().ok()?)?,
);
Some(pfn.gpa())
}
fn gpa_from_pfn_range(pfn_range: &PfnRange, page_idx: u64) -> Option<Gpa> {
let offset = page_idx.checked_mul(Page::size())?;
Some(Pfn::new(pfn_range.page_file_number).gpa_with_offset(offset))
}
/// Walk a LIST_ENTRY of LdrDataTableEntry. It is used to dump both the user &
/// driver / module lists.
fn try_read_module_map(parser: &mut KernelDumpParser, head: Gva) -> Result<Option<ModuleMap>> {
let mut modules = ModuleMap::new();
let Some(entry) = parser.try_virt_read_struct::<ListEntry>(head)? else {
return Ok(None);
};
let mut entry_addr = entry.flink.into();
// We'll walk it until we hit the starting point (it is circular).
while entry_addr != head {
// Read the table entry..
let Some(data) = parser.try_virt_read_struct::<LdrDataTableEntry>(entry_addr)? else {
return Ok(None);
};
// ..and read it. We first try to read `full_dll_name` but will try
// `base_dll_name` is we couldn't read the former.
let Some(dll_name) = parser
.try_virt_read_unicode_string(&data.full_dll_name)
.and_then(|s| {
if s.is_none() {
// If we failed to read the `full_dll_name`, give `base_dll_name` a shot.
parser.try_virt_read_unicode_string(&data.base_dll_name)
} else {
Ok(s)
}
})?
else {
return Ok(None);
};
// Shove it into the map.
let dll_end_addr = data
.dll_base
.checked_add(data.size_of_image.into())
.ok_or_else(|| KdmpParserError::Overflow("module address"))?;
let at = data.dll_base.into()..dll_end_addr.into();
let inserted = modules.insert(at, dll_name);
debug_assert!(inserted.is_none());
// Go to the next entry.
entry_addr = data.in_load_order_links.flink.into();
}
Ok(Some(modules))
}
/// Extract the drivers / modules out of the `PsLoadedModuleList`.
fn try_extract_kernel_modules(parser: &mut KernelDumpParser) -> Result<Option<ModuleMap>> {
// Walk the LIST_ENTRY!
try_read_module_map(parser, parser.headers().ps_loaded_module_list.into())
}
/// Try to find the right `nt!_KPRCB` by walking them and finding one that has
/// the same `Rsp` than in the dump headers' context.
fn try_find_prcb(
parser: &mut KernelDumpParser,
kd_debugger_data_block: &KdDebuggerData64,
) -> Result<Option<Gva>> {
let mut processor_block = kd_debugger_data_block.ki_processor_block;
for _ in 0..parser.headers().number_processors {
// Read the KPRCB pointer.
let Some(kprcb_addr) = parser.try_virt_read_struct::<u64>(processor_block.into())? else {
return Ok(None);
};
// Calculate the address of where the CONTEXT pointer is at..
let kprcb_context_addr = kprcb_addr
.checked_add(kd_debugger_data_block.offset_prcb_context.into())
.ok_or_else(|| KdmpParserError::Overflow("offset_prcb"))?;
// ..and read it.
let Some(kprcb_context_addr) =
parser.try_virt_read_struct::<u64>(kprcb_context_addr.into())?
else {
return Ok(None);
};
// Read the context..
let Some(kprcb_context) =
parser.try_virt_read_struct::<Context>(kprcb_context_addr.into())?
else {
return Ok(None);
};
// ..and compare it to ours.
let kprcb_context = Box::new(kprcb_context);
if kprcb_context.rsp == parser.context_record().rsp {
// The register match so we'll assume the current KPRCB is the one describing
// the 'foreground' processor in the crash-dump.
return Ok(Some(kprcb_addr.into()));
}
// Otherwise, let's move on to the next pointer.
processor_block = processor_block
.checked_add(mem::size_of::<u64>() as _)
.ok_or_else(|| KdmpParserError::Overflow("kprcb ptr"))?;
}
Ok(None)
}
/// Extract the user modules list by grabbing the current thread from the KPRCB.
/// Then, walk the `PEB.Ldr.InLoadOrderModuleList`.
fn try_extract_user_modules(
parser: &mut KernelDumpParser,
kd_debugger_data_block: &KdDebuggerData64,
prcb_addr: Gva,
) -> Result<Option<ModuleMap>> {
// Get the current _KTHREAD..
let kthread_addr = prcb_addr
.u64()
.checked_add(kd_debugger_data_block.offset_prcb_current_thread.into())
.ok_or(KdmpParserError::Overflow("offset prcb current thread"))?;
let Some(kthread_addr) = parser.try_virt_read_struct::<u64>(kthread_addr.into())? else {
return Ok(None);
};
// ..then its TEB..
let teb_addr = kthread_addr
.checked_add(kd_debugger_data_block.offset_kthread_teb.into())
.ok_or(KdmpParserError::Overflow("offset kthread teb"))?;
let Some(teb_addr) = parser.try_virt_read_struct::<u64>(teb_addr.into())? else {
return Ok(None);
};
if teb_addr == 0 {
return Ok(None);
}
// ..then its PEB..
// ```
// kd> dt nt!_TEB ProcessEnvironmentBlock
// nt!_TEB
// +0x060 ProcessEnvironmentBlock : Ptr64 _PEB
// ```
let peb_offset = 0x60;
let peb_addr = teb_addr
.checked_add(peb_offset)
.ok_or(KdmpParserError::Overflow("peb offset"))?;
let Some(peb_addr) = parser.try_virt_read_struct::<u64>(peb_addr.into())? else {
return Ok(None);
};
// ..then its _PEB_LDR_DATA..
// ```
// kd> dt nt!_PEB Ldr
// +0x018 Ldr : Ptr64 _PEB_LDR_DATA
// ```
let ldr_offset = 0x18;
let peb_ldr_addr = peb_addr
.checked_add(ldr_offset)
.ok_or(KdmpParserError::Overflow("ldr offset"))?;
let Some(peb_ldr_addr) = parser.try_virt_read_struct::<u64>(peb_ldr_addr.into())? else {
return Ok(None);
};
// ..and finally the `InLoadOrderModuleList`.
// ```
// kd> dt nt!_PEB_LDR_DATA InLoadOrderModuleList
// +0x010 InLoadOrderModuleList : _LIST_ENTRY
// ````
let in_load_order_module_list_offset = 0x10;
let module_list_entry_addr = peb_ldr_addr
.checked_add(in_load_order_module_list_offset)
.ok_or(KdmpParserError::Overflow(
"in load order module list offset",
))?;
// From there, we walk the list!
try_read_module_map(parser, module_list_entry_addr.into())
}
/// Filter out [`AddrTranslationError`] errors and turn them into `None`. This
/// makes it easier for caller code to write logic that can recover from a
/// memory read failure by bailing out for example, and not bubbling up an
/// error.
fn filter_addr_translation_err<T>(res: Result<T>) -> Result<Option<T>> {
match res {
Ok(o) => Ok(Some(o)),
// If we encountered a memory reading error, we won't consider this as a failure.
Err(KdmpParserError::AddrTranslation(..)) => Ok(None),
Err(e) => Err(e),
}
}
/// A module map. The key is the range of where the module lives at and the
/// value is a path to the module or it's name if no path is available.
pub type ModuleMap = HashMap<Range<Gva>, String>;
/// A kernel dump parser that gives access to the physical memory space stored
/// in the dump. It also offers virtual to physical memory translation as well
/// as a virtual read facility.
pub struct KernelDumpParser {
/// Which type of dump is it?
dump_type: DumpType,
/// Context header.
context: Box<Context>,
/// The dump headers.
headers: Box<Header64>,
/// This maps a physical address to a file offset. Seeking there gives the
/// page content.
physmem: PhysmemMap,
/// The [`Reader`] object that allows us to seek / read the dump file which
/// could be memory mapped, read from a file, etc.
reader: RefCell<Box<dyn Reader>>,
/// The driver modules loaded when the crash-dump was taken. Extracted from
/// the nt!PsLoadedModuleList.
kernel_modules: ModuleMap,
/// The user modules / DLLs loaded when the crash-dump was taken. Extract
/// from the current PEB.Ldr.InLoadOrderModuleList.
user_modules: ModuleMap,
}
impl Debug for KernelDumpParser {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("KernelDumpParser")
.field("dump_type", &self.dump_type)
.finish()
}
}
impl KernelDumpParser {
/// Create an instance from a file path. This memory maps the file and
/// parses it.
pub fn with_reader(mut reader: impl Reader + 'static) -> Result<Self> {
// Parse the dump header and check if things look right.
let headers = Box::new(read_struct::<Header64>(&mut reader)?);
if headers.signature != DUMP_HEADER64_EXPECTED_SIGNATURE {
return Err(KdmpParserError::InvalidSignature(headers.signature));
}
if headers.valid_dump != DUMP_HEADER64_EXPECTED_VALID_DUMP {
return Err(KdmpParserError::InvalidValidDump(headers.valid_dump));
}
// Grab the dump type and make sure it is one we support.
let dump_type = DumpType::try_from(headers.dump_type)?;
// Let's figure out how to get physical memory out of this dump now.
let physmem = Self::build_physmem(dump_type, &headers, &mut reader)?;
// Read the context record.
let context = Box::new(read_struct(&mut io::Cursor::new(
headers.context_record_buffer.as_slice(),
))?);
let reader: RefCell<Box<dyn Reader>> = RefCell::new(Box::new(reader));
let mut parser = Self {
dump_type,
context,
headers,
physmem,
reader,
kernel_modules: Default::default(),
user_modules: Default::default(),
};
// Extract the kernel modules if we can. If it fails because of a memory
// translation error we'll keep going, otherwise we'll error out.
if let Some(kernel_modules) = try_extract_kernel_modules(&mut parser)? {
parser.kernel_modules.extend(kernel_modules);
}
// Now let's try to find out user-modules. For that we need the
// KDDEBUGGER_DATA_BLOCK structure to know where a bunch of things are.
// If we can't read the block, we'll have to stop the adventure here as we won't
// be able to read the things we need to keep going.
let Some(kd_debugger_data_block) = parser.try_virt_read_struct::<KdDebuggerData64>(
parser.headers().kd_debugger_data_block.into(),
)?
else {
return Ok(parser);
};
let kd_debugger_data_block = Box::new(kd_debugger_data_block);
// We need to figure out which PRCB is the one that crashed.
let Some(prcb_addr) = try_find_prcb(&mut parser, &kd_debugger_data_block)? else {
return Ok(parser);
};
// Finally, we're ready to extract the user modules!
let Some(user_modules) =
try_extract_user_modules(&mut parser, &kd_debugger_data_block, prcb_addr)?
else {
return Ok(parser);
};
parser.user_modules.extend(user_modules);
Ok(parser)
}
pub fn new(dump_path: impl AsRef<Path>) -> Result<Self> {
// We'll assume that if you are opening a dump file larger than 4gb, you don't
// want it memory mapped.
let size = dump_path.as_ref().metadata()?.len();
const FOUR_GIGS: u64 = 1_024 * 1_024 * 1_024 * 4;
match size {
0..=FOUR_GIGS => {
let mapped_file = MappedFileReader::new(dump_path.as_ref())?;
Self::with_reader(mapped_file)
}
_ => {
let file = File::open(dump_path)?;
Self::with_reader(file)
}
}
}
/// Physical memory map that maps page aligned [`Gpa`] to `offset` where the
/// content of the page can be found. The offset is relevant with the
/// associated `reader`.
pub fn physmem(&self) -> impl ExactSizeIterator<Item = (Gpa, u64)> + '_ {
self.physmem.iter().map(|(&k, &v)| (k, v))
}
/// Kernel modules loaded when the dump was taken.
pub fn kernel_modules(&self) -> impl ExactSizeIterator<Item = (&Range<Gva>, &str)> + '_ {
self.kernel_modules.iter().map(|(k, v)| (k, v.as_str()))
}
/// User modules loaded when the dump was taken.
pub fn user_modules(&self) -> impl ExactSizeIterator<Item = (&Range<Gva>, &str)> + '_ {
self.user_modules.iter().map(|(k, v)| (k, v.as_str()))
}
/// What kind of dump is it?
pub fn dump_type(&self) -> DumpType {
self.dump_type
}
/// Get the dump headers.
pub fn headers(&self) -> &Header64 {
&self.headers
}
/// Get the exception record.
pub fn exception_record(&self) -> &ExceptionRecord64 {
&self.headers.exception
}
/// Get the context record.
pub fn context_record(&self) -> &Context {
&self.context
}
/// Translate a [`Gpa`] into a file offset of where the content of the page
/// resides in.
pub fn phys_translate(&self, gpa: Gpa) -> Result<u64> {
let offset = *self
.physmem
.get(&gpa.page_align())
.ok_or(AddrTranslationError::Phys(gpa))?;
offset
.checked_add(gpa.offset())
.ok_or_else(|| KdmpParserError::Overflow("w/ gpa offset"))
}
/// Read physical memory starting at `gpa` into a `buffer`.
pub fn phys_read(&self, gpa: Gpa, buf: &mut [u8]) -> Result<usize> {
// Amount of bytes left to read.
let mut amount_left = buf.len();
// Total amount of bytes that we have successfully read.
let mut total_read = 0;
// The current gpa we are reading from.
let mut addr = gpa;
// Let's try to read as much as the user wants.
while amount_left > 0 {
// Translate the gpa into a file offset..
let phy_offset = self.phys_translate(addr)?;
// ..and seek the reader there.
self.seek(io::SeekFrom::Start(phy_offset))?;
// We need to take care of reads that straddle different physical memory pages.
// So let's figure out the maximum amount of bytes we can read off this page.
// Either, we read it until its end, or we stop if the user wants us to read
// less.
let left_in_page = (Page::size() - gpa.offset()) as usize;
let amount_wanted = min(amount_left, left_in_page);
// Figure out where we should read into.
let slice = &mut buf[total_read..total_read + amount_wanted];
// Read the physical memory!
let amount_read = self.read(slice)?;
// Update the total amount of read bytes and how much work we have left.
total_read += amount_read;
amount_left -= amount_read;
// If we couldn't read as much as we wanted, we're done.
if amount_read != amount_wanted {
return Ok(total_read);
}
// We have more work to do, so let's move to the next page.
addr = addr.next_aligned_page();
}
// Yay, we read as much bytes as the user wanted!
Ok(total_read)
}
/// Read an exact amount of physical memory starting at `gpa` into a
/// `buffer`.
pub fn phys_read_exact(&self, gpa: Gpa, buf: &mut [u8]) -> Result<()> {
// Read physical memory.
let len = self.phys_read(gpa, buf)?;
// If we read as many bytes as we wanted, then it's a win..
if len == buf.len() {
Ok(())
}
// ..otherwise, we call it quits.
else {
Err(KdmpParserError::PartialPhysRead)
}
}
/// Read a `T` from physical memory.
pub fn phys_read_struct<T>(&self, gpa: Gpa) -> Result<T> {
let mut t = mem::MaybeUninit::uninit();
let size_of_t = mem::size_of_val(&t);
let slice_over_t =
unsafe { slice::from_raw_parts_mut(t.as_mut_ptr() as *mut u8, size_of_t) };
self.phys_read_exact(gpa, slice_over_t)?;
Ok(unsafe { t.assume_init() })
}
/// Translate a [`Gva`] into a [`Gpa`].
pub fn virt_translate(&self, gva: Gva) -> Result<Gpa> {
// Aligning in case PCID bits are set (bits 11:0)
let pml4_base = Gpa::from(self.headers.directory_table_base).page_align();
let pml4e_gpa = Gpa::new(pml4_base.u64() + (gva.pml4e_idx() * 8));
let pml4e = Pxe::from(self.phys_read_struct::<u64>(pml4e_gpa)?);
if !pml4e.present() {
return Err(AddrTranslationError::Virt(gva, PxeNotPresent::Pml4e).into());
}
let pdpt_base = pml4e.pfn.gpa();
let pdpte_gpa = Gpa::new(pdpt_base.u64() + (gva.pdpe_idx() * 8));
let pdpte = Pxe::from(self.phys_read_struct::<u64>(pdpte_gpa)?);
if !pdpte.present() {
return Err(AddrTranslationError::Virt(gva, PxeNotPresent::Pdpte).into());
}
// huge pages:
// 7 (PS) - Page size; must be 1 (otherwise, this entry references a page
// directory; see Table 4-1
let pd_base = pdpte.pfn.gpa();
if pdpte.large_page() {
return Ok(Gpa::new(pd_base.u64() + (gva.u64() & 0x3fff_ffff)));
}
let pde_gpa = Gpa::new(pd_base.u64() + (gva.pde_idx() * 8));
let pde = Pxe::from(self.phys_read_struct::<u64>(pde_gpa)?);
if !pde.present() {
return Err(AddrTranslationError::Virt(gva, PxeNotPresent::Pde).into());
}
// large pages:
// 7 (PS) - Page size; must be 1 (otherwise, this entry references a page
// table; see Table 4-18
let pt_base = pde.pfn.gpa();
if pde.large_page() {
return Ok(Gpa::new(pt_base.u64() + (gva.u64() & 0x1f_ffff)));
}
let pte_gpa = Gpa::new(pt_base.u64() + (gva.pte_idx() * 8));
let pte = Pxe::from(self.phys_read_struct::<u64>(pte_gpa)?);
if !pte.present() {
// We'll allow reading from a transition PTE, so return an error only if it's
// not one, otherwise we'll carry on.
if !pte.transition() {
return Err(AddrTranslationError::Virt(gva, PxeNotPresent::Pte).into());
}
}
let page_base = pte.pfn.gpa();
Ok(Gpa::new(page_base.u64() + gva.offset()))
}
/// Read virtual memory starting at `gva` into a `buffer`.
pub fn virt_read(&self, gva: Gva, buf: &mut [u8]) -> Result<usize> {
// Amount of bytes left to read.
let mut amount_left = buf.len();
// Total amount of bytes that we have successfully read.
let mut total_read = 0;
// The current gva we are reading from.
let mut addr = gva;
// Let's try to read as much as the user wants.
while amount_left > 0 {
// We need to take care of reads that straddle different virtual memory pages.
// So let's figure out the maximum amount of bytes we can read off this page.
// Either, we read it until its end, or we stop if the user wants us to read
// less.
let left_in_page = (Page::size() - addr.offset()) as usize;
let amount_wanted = min(amount_left, left_in_page);
// Figure out where we should read into.
let slice = &mut buf[total_read..total_read + amount_wanted];
// Translate the gva into a gpa..
let gpa = self.virt_translate(addr)?;
// .. and read the physical memory!
let amount_read = self.phys_read(gpa, slice)?;
// Update the total amount of read bytes and how much work we have left.
total_read += amount_read;
amount_left -= amount_read;
// If we couldn't read as much as we wanted, we're done.
if amount_read != amount_wanted {
return Ok(total_read);
}
// We have more work to do, so let's move to the next page.
addr = addr.next_aligned_page();
}
// Yay, we read as much bytes as the user wanted!
Ok(total_read)
}
/// Try to read virtual memory starting at `gva` into a `buffer`. If a
/// memory translation error occurs, it'll return `None` instead of an
/// error.
pub fn try_virt_read(&self, gva: Gva, buf: &mut [u8]) -> Result<Option<usize>> {
filter_addr_translation_err(self.virt_read(gva, buf))
}
/// Read an exact amount of virtual memory starting at `gva`.
pub fn virt_read_exact(&self, gva: Gva, buf: &mut [u8]) -> Result<()> {
// Read virtual memory.
let len = self.virt_read(gva, buf)?;
// If we read as many bytes as we wanted, then it's a win..
if len == buf.len() {
Ok(())
}
// ..otherwise, we call it quits.
else {
Err(KdmpParserError::PartialVirtRead)
}
}
/// Try to read an exact amount of virtual memory starting at `gva`. If a
/// memory translation error occurs, it'll return `None` instead of an
/// error.
pub fn try_virt_read_exact(&self, gva: Gva, buf: &mut [u8]) -> Result<Option<()>> {
filter_addr_translation_err(self.virt_read_exact(gva, buf))
}
/// Read a `T` from virtual memory.
pub fn virt_read_struct<T>(&self, gva: Gva) -> Result<T> {
let mut t = mem::MaybeUninit::uninit();
let size_of_t = mem::size_of_val(&t);
let slice_over_t =
unsafe { slice::from_raw_parts_mut(t.as_mut_ptr() as *mut u8, size_of_t) };
self.virt_read_exact(gva, slice_over_t)?;
Ok(unsafe { t.assume_init() })
}
/// Try to read a `T` from virtual memory. If a memory translation error
/// occurs, it'll return `None` instead of an error.
pub fn try_virt_read_struct<T>(&self, gva: Gva) -> Result<Option<T>> {
filter_addr_translation_err(self.virt_read_struct::<T>(gva))
}
pub fn seek(&self, pos: io::SeekFrom) -> Result<u64> {
Ok(self.reader.borrow_mut().seek(pos)?)
}
pub fn read(&self, buf: &mut [u8]) -> Result<usize> {
Ok(self.reader.borrow_mut().read(buf)?)
}
/// Try to read a `UNICODE_STRING`.
fn try_virt_read_unicode_string(&self, unicode_str: &UnicodeString) -> Result<Option<String>> {
if (unicode_str.length % 2) != 0 {
return Err(KdmpParserError::InvalidUnicodeString);
}
let mut buffer = vec![0; unicode_str.length.into()];
match self.virt_read_exact(unicode_str.buffer.into(), &mut buffer) {
Ok(_) => {}
// If we encountered a memory translation error, we don't consider this a failure.
Err(KdmpParserError::AddrTranslation(_)) => return Ok(None),
Err(e) => return Err(e),
};
let n = unicode_str.length / 2;
Ok(Some(String::from_utf16(unsafe {
slice::from_raw_parts(buffer.as_ptr().cast(), n.into())
})?))
}
/// Build the physical memory map for a [`DumpType::Full`] dump.
///
/// Here is how runs works. Every `runs` document a number of consecutive
/// physical pages starting at a `PFN`. This means that you can have
/// "holes" in the physical address space and you don't need to write any
/// data for them. Here is a small example:
/// - Run[0]: BasePage = 1_337, PageCount = 2
/// - Run[1]: BasePage = 1_400, PageCount = 1
///
/// In the above, there is a "hole" between the two runs. It has 2+1 memory
/// pages at: Pfn(1_337+0), Pfn(1_337+1) and Pfn(1_400+0) (but nothing
/// at Pfn(1_339)).
///
/// In terms of the content of those physical memory pages, they are packed
/// and stored one after another. If the first page of the first run is
/// at file offset 0x2_000, then the first page of the second run is at
/// file offset 0x2_000+(2*0x1_000).
fn full_physmem(headers: &Header64, reader: &mut impl Reader) -> Result<PhysmemMap> {
let mut page_offset = reader.stream_position()?;
let mut run_cursor = io::Cursor::new(headers.physical_memory_block_buffer);
let physmem_desc = read_struct::<PhysmemDesc>(&mut run_cursor)?;
let mut physmem = PhysmemMap::new();
for run_idx in 0..physmem_desc.number_of_runs {
let run = read_struct::<PhysmemRun>(&mut run_cursor)?;
for page_idx in 0..run.page_count {
// Calculate the physical address.
let phys_addr = run
.phys_addr(page_idx)
.ok_or_else(|| KdmpParserError::PhysAddrOverflow(run_idx, page_idx))?;
// We now know where this page lives at, insert it into the physmem map.
if physmem.insert(phys_addr, page_offset).is_some() {
return Err(KdmpParserError::DuplicateGpa(phys_addr));
}
// Move the page offset along.
page_offset = page_offset
.checked_add(Page::size())
.ok_or_else(|| KdmpParserError::PageOffsetOverflow(run_idx, page_idx))?;
}
}
Ok(physmem)
}
/// Build the physical memory map for a [`DumpType::Bmp`] dump.
fn bmp_physmem(reader: &mut impl Reader) -> Result<PhysmemMap> {
let bmp_header = read_struct::<BmpHeader64>(reader)?;
if !bmp_header.looks_good() {
return Err(KdmpParserError::InvalidData(
"bmp header doesn't look right",
));
}
debug_assert_eq!(bmp_header.pages % 8, 0);
let bitmap_size = bmp_header.pages / 8;
let mut page_offset = bmp_header.first_page;
let mut physmem = PhysmemMap::new();
// Walk the bitmap byte per byte..
for bitmap_idx in 0..bitmap_size {
let mut byte = [0u8];
reader.read_exact(&mut byte)?;
let byte = byte[0];
// ..and walk every bits.
for bit_idx in 0..8 {
// If it's not set, go to the next.
if byte.bit(bit_idx) == 0 {
continue;
}
// Calculate where the page is.
let pa = gpa_from_bitmap(bitmap_idx, bit_idx)
.ok_or_else(|| KdmpParserError::Overflow("pfn in bitmap"))?;
let insert = physmem.insert(pa, page_offset);
debug_assert!(insert.is_none());
page_offset = page_offset.checked_add(Page::size()).ok_or_else(|| {
KdmpParserError::BitmapPageOffsetOverflow(bitmap_idx, bit_idx)
})?;
}
}
Ok(physmem)
}
/// Build the physical memory map for [`DumpType::KernelMemory`] /
/// [`DumpType::KernelAndUserMemory`] and [`DumpType::CompleteMemory`] dump.
fn kernel_physmem(dump_type: DumpType, reader: &mut impl Reader) -> Result<PhysmemMap> {
use DumpType as D;
let mut page_count = 0u64;
let (mut page_offset, metadata_size, total_number_of_pages) = match dump_type {
D::KernelMemory | D::KernelAndUserMemory => {
let kernel_hdr = read_struct::<KernelRdmpHeader64>(reader)?;
if !kernel_hdr.hdr.looks_good() {
return Err(KdmpParserError::InvalidData(
"RdmpHeader64 doesn't look right",
));
}
(
kernel_hdr.hdr.first_page_offset,
kernel_hdr.hdr.metadata_size,
0,
)
}
D::CompleteMemory => {
let full_hdr = read_struct::<FullRdmpHeader64>(reader)?;
if !full_hdr.hdr.looks_good() {
return Err(KdmpParserError::InvalidData(
"FullRdmpHeader64 doesn't look right",
));
}
(
full_hdr.hdr.first_page_offset,
full_hdr.hdr.metadata_size,
full_hdr.total_number_of_pages,
)
}
_ => unreachable!(),
};
if page_offset == 0 || metadata_size == 0 {
return Err(KdmpParserError::InvalidData(
"no first page or metadata size",
));
}
let pfn_range_size = mem::size_of::<PfnRange>();
if (metadata_size % pfn_range_size as u64) != 0 {
return Err(KdmpParserError::InvalidData(
"metadata size is not a multiple of 8",
));
}
let number_pfns = metadata_size / pfn_range_size as u64;
let mut physmem = PhysmemMap::new();
for _ in 0..number_pfns {
if dump_type == D::CompleteMemory {
// `CompleteMemoryDump` type seems to be bound by the `total_number_of_pages`
// field, *not* by `metadata_size`.
if page_count == total_number_of_pages {
break;
}
if page_count > total_number_of_pages {
return Err(KdmpParserError::InvalidData(
"page_count > total_number_of_pages",
));
}
}
let pfn_range = read_struct::<PfnRange>(reader)?;
if pfn_range.page_file_number == 0 {
break;
}
for page_idx in 0..pfn_range.number_of_pages {
let gpa = gpa_from_pfn_range(&pfn_range, page_idx)
.ok_or_else(|| KdmpParserError::Overflow("w/ pfn_range"))?;
let insert = physmem.insert(gpa, page_offset);
debug_assert!(insert.is_none());
page_offset = page_offset
.checked_add(Page::size())
.ok_or_else(|| KdmpParserError::Overflow("w/ page_offset"))?;
}
page_count = page_count
.checked_add(pfn_range.number_of_pages)
.ok_or_else(|| KdmpParserError::Overflow("w/ page_count"))?;
}
Ok(physmem)
}
fn build_physmem(
dump_type: DumpType,
headers: &Header64,
reader: &mut impl Reader,
) -> Result<PhysmemMap> {
use DumpType as D;
match dump_type {
D::Full => Self::full_physmem(headers, reader),
D::Bmp | D::LiveKernelMemory => Self::bmp_physmem(reader),
D::KernelMemory | D::KernelAndUserMemory | D::CompleteMemory => {
Self::kernel_physmem(dump_type, reader)
}
}
}
}