1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
// Axel '0vercl0k' Souchet - February 25 2024
//! This has all the parsing logic for parsing kernel crash-dumps.
use std::cell::RefCell;
use std::cmp::min;
use std::fmt::Debug;
use std::fs::File;
use std::path::Path;
use std::{io, mem};
use crate::bits::Bits;
use crate::error::Result;
use crate::gxa::Gxa;
use crate::map::{MappedFileReader, Reader};
use crate::structs::{
read_struct, BmpHeader64, Context, DumpType, ExceptionRecord64, FullRdmpHeader64, Header64,
KernelRdmpHeader64, Page, PfnRange, PhysmemDesc, PhysmemMap, PhysmemRun,
HEADER64_EXPECTED_SIGNATURE, HEADER64_EXPECTED_VALID_DUMP,
};
use crate::{Gpa, Gva, KdmpParserError, Pfn, Pxe};
fn gpa_from_bitmap(bitmap_idx: u64, bit_idx: usize) -> Option<Gpa> {
let pfn = Pfn::new(
bitmap_idx
.checked_mul(8)?
.checked_add(bit_idx.try_into().ok()?)?,
);
Some(pfn.gpa())
}
fn gpa_from_pfn_range(pfn_range: &PfnRange, page_idx: u64) -> Option<Gpa> {
let offset = page_idx.checked_mul(Page::size())?;
Some(Pfn::new(pfn_range.page_file_number).gpa_with_offset(offset))
}
/// A kernel dump parser that gives access to the physical memory space stored
/// in the dump. It also offers virtual to physical memory translation as well
/// as a virtual read facility.
pub struct KernelDumpParser<'reader> {
/// Which type of dump is it?
dump_type: DumpType,
/// Context header.
context: Box<Context>,
/// The dump headers.
headers: Box<Header64>,
/// This maps a physical address to a file offset. Seeking there gives the
/// page content.
physmem: PhysmemMap,
/// The [`Reader`] object that allows us to seek / read the dump file which
/// could be memory mapped, read from a file, etc.
reader: RefCell<Box<dyn Reader + 'reader>>,
}
impl<'reader> Debug for KernelDumpParser<'reader> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("KernelDumpParser")
.field("dump_type", &self.dump_type)
.finish()
}
}
impl<'reader> KernelDumpParser<'reader> {
/// Create an instance from a file path. This memory maps the file and
/// parses it.
pub fn with_reader(mut reader: impl Reader + 'reader) -> Result<Self> {
// Parse the dump header and check if things look right.
let headers = Box::new(read_struct::<Header64>(&mut reader)?);
if headers.signature != HEADER64_EXPECTED_SIGNATURE {
return Err(KdmpParserError::InvalidSignature(headers.signature));
}
if headers.valid_dump != HEADER64_EXPECTED_VALID_DUMP {
return Err(KdmpParserError::InvalidValidDump(headers.valid_dump));
}
// Grab the dump type and make sure it is one we support.
let dump_type = DumpType::try_from(headers.dump_type)?;
// Let's figure out how to get physical memory out of this dump now.
let physmem = Self::build_physmem(dump_type, &headers, &mut reader)?;
// Read the context record.
let context = Box::new(read_struct::<Context>(&mut io::Cursor::new(
headers.context_record_buffer.as_slice(),
))?);
let reader: RefCell<Box<dyn Reader>> = RefCell::new(Box::new(reader));
Ok(Self {
dump_type,
context,
headers,
physmem,
reader,
})
}
pub fn new<P>(dump_path: &P) -> Result<Self>
where
P: AsRef<Path>,
{
// We'll assume that if you are opening a dump file larger than 4gb, you don't
// want it memory mapped.
let size = dump_path.as_ref().metadata()?.len();
const FOUR_GIGS: u64 = 1_024 * 1_024 * 1_024 * 4;
match size {
0..=FOUR_GIGS => {
let mapped_file = MappedFileReader::new(dump_path.as_ref())?;
Self::with_reader(mapped_file)
}
_ => {
let file = File::open(dump_path)?;
Self::with_reader(file)
}
}
}
pub fn physmem(&self) -> impl ExactSizeIterator<Item = (Gpa, u64)> + '_ {
self.physmem.iter().map(|(&k, &v)| (k, v))
}
/// What kind of dump is it?
pub fn dump_type(&self) -> DumpType {
self.dump_type
}
/// Get the exception record.
pub fn exception_record(&self) -> &ExceptionRecord64 {
&self.headers.exception
}
/// Get the context record.
pub fn context_record(&self) -> &Context {
&self.context
}
/// Translate a [`Gpa`] into a file offset of where the content of the page
/// resides in.
fn phys_translate(&self, gpa: Gpa) -> Option<u64> {
let offset = *self.physmem.get(&gpa.page_align())?;
offset.checked_add(gpa.offset())
}
fn seek(&self, pos: io::SeekFrom) -> Result<u64> {
Ok(self.reader.borrow_mut().seek(pos)?)
}
fn read(&self, buf: &mut [u8]) -> Result<usize> {
Ok(self.reader.borrow_mut().read(buf)?)
}
/// Read physical memory starting at `gpa` into a `buffer`.
pub fn phys_read(&self, gpa: Gpa, buffer: &mut [u8]) -> Option<usize> {
// Amount of bytes left to read.
let mut amount_left = buffer.len();
// Total amount of bytes that we have successfully read.
let mut total_read = 0;
// The current gpa we are reading from.
let mut addr = gpa;
// Let's try to read as much as the user wants.
while amount_left > 0 {
// Translate the gpa into a file offset..
let phy_offset = self.phys_translate(addr)?;
// ..and seek the reader there.
self.seek(io::SeekFrom::Start(phy_offset)).ok()?;
// We need to take care of reads that straddle different physical memory pages.
// So let's figure out the maximum amount of bytes we can read off this page.
// Either, we read it until its end, or we stop if the user wants us to read
// less.
let left_in_page = (Page::size() - gpa.offset()) as usize;
let amount_wanted = min(amount_left, left_in_page);
// Figure out where we should read into.
let slice = &mut buffer[total_read..total_read + amount_wanted];
// Read the physical memory!
let amount_read = self.read(slice).ok()?;
// Update the total amount of read bytes and how much work we have left.
total_read += amount_read;
amount_left -= amount_read;
// If we couldn't read as much as we wanted, we're done.
if amount_read != amount_wanted {
return Some(total_read);
}
// We have more work to do, so let's move to the next page.
addr = addr.next_aligned_page();
}
// Yay, we read as much bytes as the user wanted!
Some(total_read)
}
/// Read an exact amount of physical memory starting at `gpa` into a
/// `buffer`.
pub fn phys_read_exact(&self, gpa: Gpa, buffer: &mut [u8]) -> Option<()> {
// Read physical memory.
let len = self.phys_read(gpa, buffer)?;
// If we read as many bytes as we wanted, then it's a win..
if len == buffer.len() {
Some(())
}
// ..otherwise, we call it quits.
else {
None
}
}
/// Read a `u64` in physical memory at `gpa`.
pub fn phys_read8(&self, gpa: Gpa) -> Option<u64> {
let mut buffer = [0; mem::size_of::<u64>()];
self.phys_read_exact(gpa, &mut buffer)?;
Some(u64::from_le_bytes(buffer))
}
/// Read virtual memory starting at `gva` into a `buffer`.
pub fn virt_read(&self, gva: Gva, buffer: &mut [u8]) -> Option<usize> {
// Amount of bytes left to read.
let mut amount_left = buffer.len();
// Total amount of bytes that we have successfully read.
let mut total_read = 0;
// The current gva we are reading from.
let mut addr = gva;
// Let's try to read as much as the user wants.
while amount_left > 0 {
// We need to take care of reads that straddle different virtual memory pages.
// So let's figure out the maximum amount of bytes we can read off this page.
// Either, we read it until its end, or we stop if the user wants us to read
// less.
let left_in_page = (Page::size() - addr.offset()) as usize;
let amount_wanted = min(amount_left, left_in_page);
// Figure out where we should read into.
let slice = &mut buffer[total_read..total_read + amount_wanted];
// Translate the gva into a gpa..
let gpa = self.virt_translate(addr)?;
// .. and read the physical memory!
let amount_read = self.phys_read(gpa, slice)?;
// Update the total amount of read bytes and how much work we have left.
total_read += amount_read;
amount_left -= amount_read;
// If we couldn't read as much as we wanted, we're done.
if amount_read != amount_wanted {
return Some(total_read);
}
// We have more work to do, so let's move to the next page.
addr = addr.next_aligned_page();
}
// Yay, we read as much bytes as the user wanted!
Some(total_read)
}
/// Read virtual memory starting at `gva`
pub fn virt_read_exact(&self, gva: Gva, buffer: &mut [u8]) -> Option<()> {
// Read virtual memory.
let len = self.virt_read(gva, buffer)?;
// If we read as many bytes as we wanted, then it's a win..
if len == buffer.len() {
Some(())
}
// ..otherwise, we call it quits.
else {
None
}
}
/// Translate a [`Gva`] into a [`Gpa`].
pub fn virt_translate(&self, gva: Gva) -> Option<Gpa> {
// Aligning in case PCID bits are set (bits 11:0)
let pml4_base = Gpa::from(self.headers.directory_table_base).page_align();
let pml4e_gpa = Gpa::new(pml4_base.u64() + (gva.pml4e_idx() * 8));
let pml4e = Pxe::from(self.phys_read8(pml4e_gpa)?);
if !pml4e.present() {
return None;
}
let pdpt_base = pml4e.pfn.gpa();
let pdpte_gpa = Gpa::new(pdpt_base.u64() + (gva.pdpe_idx() * 8));
let pdpte = Pxe::from(self.phys_read8(pdpte_gpa)?);
if !pdpte.present() {
return None;
}
// huge pages:
// 7 (PS) - Page size; must be 1 (otherwise, this entry references a page
// directory; see Table 4-1
let pd_base = pdpte.pfn.gpa();
if pdpte.large_page() {
return Some(Gpa::new(pd_base.u64() + (gva.u64() & 0x3fff_ffff)));
}
let pde_gpa = Gpa::new(pd_base.u64() + (gva.pde_idx() * 8));
let pde = Pxe::from(self.phys_read8(pde_gpa)?);
if !pde.present() {
return None;
}
// large pages:
// 7 (PS) - Page size; must be 1 (otherwise, this entry references a page
// table; see Table 4-18
let pt_base = pde.pfn.gpa();
if pde.large_page() {
return Some(Gpa::new(pt_base.u64() + (gva.u64() & 0x1f_ffff)));
}
let pte_gpa = Gpa::new(pt_base.u64() + (gva.pte_idx() * 8));
let pte = Pxe::from(self.phys_read8(pte_gpa)?);
if pte.large_page() {
return None;
}
let page_base = pte.pfn.gpa();
Some(Gpa::new(page_base.u64() + gva.offset()))
}
/// Build the physical memory map for a [`DumpType::Full`] dump.
///
/// Here is how runs works. Every `runs` document a number of consecutive
/// physical pages starting at a `PFN`. This means that you can have
/// "holes" in the physical address space and you don't need to write any
/// data for them. Here is a small example:
/// - Run[0]: BasePage = 1_337, PageCount = 2
/// - Run[1]: BasePage = 1_400, PageCount = 1
///
/// In the above, there is a "hole" between the two runs. It has 2+1 memory
/// pages at: Pfn(1_337+0), Pfn(1_337+1) and Pfn(1_400+0) (but nothing
/// at Pfn(1_339)).
///
/// In terms of the content of those physical memory pages, they are packed
/// and stored one after another. If the first page of the first run is
/// at file offset 0x2_000, then the first page of the second run is at
/// file offset 0x2_000+(2*0x1_000).
fn full_physmem(headers: &Header64, reader: &mut impl Reader) -> Result<PhysmemMap> {
let mut page_offset = reader.stream_position()?;
let mut run_cursor = io::Cursor::new(headers.physical_memory_block_buffer);
let physmem_desc = read_struct::<PhysmemDesc>(&mut run_cursor)?;
let mut physmem = PhysmemMap::new();
for run_idx in 0..physmem_desc.number_of_runs {
let run = read_struct::<PhysmemRun>(&mut run_cursor)?;
for page_idx in 0..run.page_count {
// Calculate the physical address.
let phys_addr = run
.phys_addr(page_idx)
.ok_or_else(|| KdmpParserError::PhysAddrOverflow(run_idx, page_idx))?;
// We now know where this page lives at, insert it into the physmem map.
if physmem.insert(phys_addr, page_offset).is_some() {
return Err(KdmpParserError::DuplicateGpa(phys_addr));
}
// Move the page offset along.
page_offset = page_offset
.checked_add(Page::size())
.ok_or_else(|| KdmpParserError::PageOffsetOverflow(run_idx, page_idx))?;
}
}
Ok(physmem)
}
/// Build the physical memory map for a [`DumpType::Bmp`] dump.
fn bmp_physmem(reader: &mut impl Reader) -> Result<PhysmemMap> {
let bmp_header = read_struct::<BmpHeader64>(reader)?;
if !bmp_header.looks_good() {
return Err(KdmpParserError::InvalidData(
"bmp header doesn't look right",
));
}
debug_assert_eq!(bmp_header.pages % 8, 0);
let bitmap_size = bmp_header.pages / 8;
let mut page_offset = bmp_header.first_page;
let mut physmem = PhysmemMap::new();
// Walk the bitmap byte per byte..
for bitmap_idx in 0..bitmap_size {
let mut byte = [0u8];
reader.read_exact(&mut byte)?;
let byte = byte[0];
// ..and walk every bits.
for bit_idx in 0..8 {
// If it's not set, go to the next.
if byte.bit(bit_idx) == 0 {
continue;
}
// Calculate where the page is.
let pa = gpa_from_bitmap(bitmap_idx, bit_idx).ok_or_else(|| {
KdmpParserError::Overflow("overflow when computing pfn in bitmap")
})?;
let insert = physmem.insert(pa, page_offset);
debug_assert!(insert.is_none());
page_offset = page_offset.checked_add(Page::size()).ok_or_else(|| {
KdmpParserError::BitmapPageOffsetOverflow(bitmap_idx, bit_idx)
})?;
}
}
Ok(physmem)
}
/// Build the physical memory map for [`DumpType::KernelMemory`] /
/// [`DumpType::KernelAndUserMemory`] and [`DumpType::CompleteMemory`] dump.
fn kernel_physmem(dump_type: DumpType, reader: &mut impl Reader) -> Result<PhysmemMap> {
use DumpType as D;
let mut page_count = 0u64;
let (mut page_offset, metadata_size, total_number_of_pages) = match dump_type {
D::KernelMemory | D::KernelAndUserMemory => {
let kernel_hdr = read_struct::<KernelRdmpHeader64>(reader)?;
if !kernel_hdr.hdr.looks_good() {
return Err(KdmpParserError::InvalidData(
"RdmpHeader64 doesn't look right",
));
}
(
kernel_hdr.hdr.first_page_offset,
kernel_hdr.hdr.metadata_size,
0,
)
}
D::CompleteMemory => {
let full_hdr = read_struct::<FullRdmpHeader64>(reader)?;
if !full_hdr.hdr.looks_good() {
return Err(KdmpParserError::InvalidData(
"FullRdmpHeader64 doesn't look right",
));
}
(
full_hdr.hdr.first_page_offset,
full_hdr.hdr.metadata_size,
full_hdr.total_number_of_pages,
)
}
_ => unreachable!(),
};
if page_offset == 0 || metadata_size == 0 {
return Err(KdmpParserError::InvalidData(
"no first page or metadata size",
));
}
let pfn_range_size = mem::size_of::<PfnRange>();
if (metadata_size % pfn_range_size as u64) != 0 {
return Err(KdmpParserError::InvalidData(
"metadata size is not a multiple of 8",
));
}
let number_pfns = metadata_size / pfn_range_size as u64;
let mut physmem = PhysmemMap::new();
for _ in 0..number_pfns {
if dump_type == D::CompleteMemory {
// `CompleteMemoryDump` type seems to be bound by the `total_number_of_pages`
// field, *not* by `metadata_size`.
if page_count == total_number_of_pages {
break;
}
if page_count > total_number_of_pages {
return Err(KdmpParserError::InvalidData(
"page_count > total_number_of_pages",
));
}
}
let pfn_range = read_struct::<PfnRange>(reader)?;
if pfn_range.page_file_number == 0 {
break;
}
for page_idx in 0..pfn_range.number_of_pages {
let gpa = gpa_from_pfn_range(&pfn_range, page_idx)
.ok_or_else(|| KdmpParserError::Overflow("overflow w/ pfn_range"))?;
let insert = physmem.insert(gpa, page_offset);
debug_assert!(insert.is_none());
page_offset = page_offset
.checked_add(Page::size())
.ok_or_else(|| KdmpParserError::Overflow("overflow w/ page_offset"))?;
}
page_count = page_count
.checked_add(pfn_range.number_of_pages)
.ok_or_else(|| KdmpParserError::Overflow("overflow w/ page_count"))?;
}
Ok(physmem)
}
fn build_physmem(
dump_type: DumpType,
headers: &Header64,
reader: &mut impl Reader,
) -> Result<PhysmemMap> {
use DumpType as D;
match dump_type {
D::Full => Self::full_physmem(headers, reader),
D::Bmp => Self::bmp_physmem(reader),
D::KernelMemory | D::KernelAndUserMemory | D::CompleteMemory => {
Self::kernel_physmem(dump_type, reader)
}
}
}
}