1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
//! The type checker and types!
//!
//! The entry point is [`typeck`][] which is implicitly
//! handled by [`Compiler::compile_path`][] or [`Compiler::compile_string`][]
//! and will produce a [`TypedProgram`][].
//!
//! You should then call [`TypedProgram::definition_graph`][] with your
//! target backend's [`PunEnv`][] to resolve all the [`PunTy`]s and get a
//! final [`DefinitionGraph`][].
//!
//! You should then call [`DefinitionGraph::definitions`][] with the set
//! of functions you want to emit (usually [`TypedProgram::all_funcs`][])
//! to get the final forward-decls and definitions your target should emit
//! to generate its program.
//!
//! If a test (function) fails, you can pass just that function to
//! [`DefinitionGraph::definitions`][] to get a minimized program for just
//! that one function.
//!
//! The type system is phased like this to allow work to be reused and shared
//! where possible. Each of the above "lowerings" represents increased levels
//! of specificity:
//!
//! * [`TypedProgram`][] is abstract over all possible backends and can be computed once.
//! * [`DefinitionGraph`][] is for a concrete backend but still abstract over what parts
//! of the program you might care about emitting. Computed once per backend config ([`PunEnv`]).
//! * [`DefinitionGraph::definitions`][] is the final concrete program we want to emit.
//!
//! In principle a backend emitting various configs for a single [`TypedProgram`][] can
//! share everything for a specific [`TyIdx`][] or [`FuncIdx`][], except they need to be
//! careful about [`PunTy`][]s which can have [`DefinitionGraph`][]-specific lowerings...
//! so really you should only recycle state created for a specific [`DefinitionGraph`]!
//!
//! TODO: unlike [`AliasTy`][]s, [`PunTy`][]s really *should* completely evaporate in the
//! backend's lowering. Perhaps we should do something in [`TypedProgram`][] to actually
//! make them transparent?
//!
//! While performance isn't a huge concern for this project, combinatorics do get
//! kind of out of control so work sharing is kinda important, especially as the backends
//! get more complex! Also it's just nice to handle backend-agnostic issues once to keep
//! things simple and correct.
use std::collections::HashMap;
use std::sync::Arc;
use miette::{Diagnostic, NamedSource, SourceSpan};
use petgraph::graph::DiGraph;
use petgraph::graph::NodeIndex;
use thiserror::Error;
use crate::parse::*;
use crate::spanned::*;
use crate::Compiler;
use crate::Result;
/// An error that occured while processing the types of a program.
#[derive(Debug, Error, Diagnostic)]
#[error("{message}")]
pub struct KdlScriptTypeError {
pub message: String,
#[source_code]
pub src: Arc<NamedSource>,
#[label]
pub span: SourceSpan,
#[help]
pub help: Option<String>,
}
/// A program that has had its symbolic types resolved to actual type ids.
///
/// Aliases and Puns are not fully resolved at this point.
///
/// Aliases still exist so that you can emit the target language's form of
/// an alias if you want to most accurately express the input program.
///
/// Puns still exist because a TypedProgram is abstract over every possible
/// output language to share the workload between each concrete backend.
/// The next step in lowering the program is to ask it to resolve
/// the puns for a specific [`crate::PunEnv`][] with [`TypedProgram::definition_graph`].
/// Which will also handle computing the order of declarations for languages like C.
#[derive(Debug)]
pub struct TypedProgram {
tcx: TyCtx,
funcs: Vec<Func>,
builtin_funcs_start: usize,
}
/// A type id
pub type TyIdx = usize;
/// A function id
pub type FuncIdx = usize;
/// The actual structure of a type
///
/// This may be either a nominal, structural, or primitive type.
///
/// Any types that this type references will already have been normalized to a [`TyIdx`][]
/// so you don't have to worry about name resolution or interning/memoizing. Notably
/// all uses of `[u32; 5]` will have the same [`TyIdx`][], although `[MyU32Alias; 5]` will
/// be get a separate type id to allow a backend to more accurately reproduce the input program.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Ty {
/// A primitive (int, float, bool, ptr)
Primitive(PrimitiveTy),
/// A nominal struct
Struct(StructTy),
/// A nominal untagged union
Union(UnionTy),
/// A nominal C-style enum (see `Tagged` for a full rust-style enum)
Enum(EnumTy),
/// A nominal tagged union (rust-style enum, see `Enum` for a c-style enum)
Tagged(TaggedTy),
/// A transparent type alias (like typed)
Alias(AliasTy),
/// A type pun that can have different underlying types for different targets
Pun(PunTy),
/// A fixed-length array
Array(ArrayTy),
/// A reference to a type (behaves as if is the Pointee, but just passed by-ref)
Ref(RefTy),
/// Empty tuple -- `()`
Empty,
}
/// A function
#[derive(Debug, Clone)]
pub struct Func {
/// The function's name
pub name: Ident,
/// The function's inputs
pub inputs: Vec<Arg>,
/// The function's outputs (note that outparams will appear as Ty::Ref outputs!)
pub outputs: Vec<Arg>,
/// Any attributes hanging off the function
pub attrs: Vec<Attr>,
#[cfg(feature = "eval")]
/// The body of the function (TBD, not needed for abi-cafe)
pub body: (),
}
/// A function argument (input or output).
#[derive(Debug, Clone)]
pub struct Arg {
/// The name of the argument
pub name: Ident,
/// The type of the arg
pub ty: TyIdx,
}
/// A primitive
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum PrimitiveTy {
/// `i8` / `int8_t`
I8,
/// `i16` / `int16_t`
I16,
/// `i32` / `int32_t`
I32,
/// `i64` / `int64_t`
I64,
/// `i128` / `int128_t`
I128,
/// `i256` / `int256_t`
I256,
/// `u8` / `uint8_t`
U8,
/// `u16` / `uint16_t`
U16,
/// `u32` / `uint32_t`
U32,
/// `u64` / `uint64_t`
U64,
/// `u128` / `uint128_t`
U128,
/// `u256` / `uint256_t`
U256,
/// `f16` / `half`
F16,
/// `f32` / `float`
F32,
/// `f64` / `double`
F64,
/// `f128` / `quad`
F128,
/// `bool`
Bool,
/// An opaque pointer (like `void*`)
Ptr,
}
/// The Ty of a nominal struct.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct StructTy {
pub name: Ident,
pub fields: Vec<FieldTy>,
pub attrs: Vec<Attr>,
}
/// The Ty of an untagged union.
///
/// See [`TaggedTy`][] for a tagged union.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct UnionTy {
pub name: Ident,
pub fields: Vec<FieldTy>,
pub attrs: Vec<Attr>,
}
/// The Ty of an Enum.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct EnumTy {
pub name: Ident,
pub variants: Vec<EnumVariantTy>,
pub attrs: Vec<Attr>,
}
/// An enum variant
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct EnumVariantTy {
pub name: Ident,
// pub val: LiteralExpr,
}
/// The Ty of a tagged union (rust-style enum).
///
/// See [`UnionTy`][] for an untagged union.
///
/// See [`EnumTy`][] for a c-style enum.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct TaggedTy {
pub name: Ident,
pub variants: Vec<TaggedVariantTy>,
pub attrs: Vec<Attr>,
}
/// A variant for a tagged union.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct TaggedVariantTy {
pub name: Ident,
pub fields: Option<Vec<FieldTy>>,
}
/// The Ty of a transparent type alias.
///
/// i.e. `type name = real` in rust
///
/// i.e. `typedef real name` in C++
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct AliasTy {
pub name: Ident,
pub real: TyIdx,
pub attrs: Vec<Attr>,
}
/// A field of a [`StructTy`][] or [`UnionTy`][].
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct FieldTy {
pub ident: Ident,
pub ty: TyIdx,
}
/// The Ty of a fixed length array.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct ArrayTy {
pub elem_ty: TyIdx,
pub len: u64,
}
/// The Ty of a reference (transparent pointer).
///
/// This is used to represent passing a value by-reference, and so backends
/// should consider the "value" to be the pointee. If you want to test that
/// a pointer doesn't have its value corrupted but don't care about the pointee,
/// use `PrimitiveTy::Ptr`.
///
/// When used in the `outputs` of a [`Func`], this expresses an out-param
/// that the caller is responsible for "allocating" (and initializing?) and
/// the callee is responsible for "writing" the value to it. The caller then
/// checks the value just like other outputs.
///
/// Out-params should appear after "normal" inputs but before vararg inputs,
/// with the name specified.
///
/// TODO: think about nested references in an output?
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct RefTy {
pub pointee_ty: TyIdx,
}
/// The Ty of a Pun.
///
/// Puns express the fact that different languages might express a type
/// in completely different ways but we expect the layout and/or ABI to
/// match.
///
/// e.g. `Option<&T>` in Rust is equivalent to `T*` in C!
///
/// Resolve this with [`TypedProgram::resolve_pun`][].
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct PunTy {
pub name: Ident,
pub blocks: Vec<PunBlockTy>,
pub attrs: Vec<Attr>,
}
/// A block for a [`PunTy`][]
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct PunBlockTy {
pub selector: PunSelector,
pub real: TyIdx,
}
/// Information on all the types.
///
/// The key function of TyCtx is to `memoize` all parsed types (TyName) into
/// type ids (TyIdx), to enable correct type comparison. Two types are equal
/// *if and only if* they have the same TyIdx.
///
/// This is necessary because *nominal* types (TyName::Named, i.e. structs) can
/// be messy due to shenanigans like captures/scoping/shadowing/inference. Types
/// may refer to names that are out of scope, and two names that are equal
/// (as strings) may not actually refer to the same type declaration.
///
/// To handle this, whenever a new named type is declared ([TyCtx::push_nominal_decl_incomplete][]),
/// we generate a unique type id ([`TyIdx`][]) for it. Then whenever we encounter
/// a reference to a Named type, we lookup the currently in scope TyIdx for that
/// name, and use that instead. Named type scoping is managed by `envs`.
///
/// Replacing type names with type ids requires a change of representation,
/// which is why we have [`Ty`][]. A Ty is the *structure* of a type with all types
/// it refers to resolved to TyIdx's (e.g. a field of a tuple, the return type of a function).
/// For convenience, non-typing metadata may also be stored in a Ty.
///
/// So a necessary intermediate step of converting an Ident to a TyIdx is to first
/// convert it to a Ty. This intermediate value is stored in `tys`.
/// If you have a TyIdx, you can get its Ty with [`realize_ty`][]. This lets you
/// e.g. check if a value being called is actually a Func, and if it is,
/// what the type ids of its arguments/return types are.
///
/// `ty_map` stores all the *structural* Tys we've seen before (everything that
/// *isn't* TyName::Named), ensuring two structural types have the same TyIdx.
/// i.e. `[u32; 4]` will have the same TyIdx everywhere it occurs.
#[derive(Debug)]
pub(crate) struct TyCtx {
/// The source code this is from, for resolving spans/errors.
src: Arc<NamedSource>,
/// The list of every known type.
///
/// These are the "canonical" copies of each type. Types are
/// registered here via `memoize`, which returns a TyIdx into
/// this array.
///
/// Types should be compared by checking if they have the same
/// TyIdx. This allows you to properly compare nominal types
/// in the face of shadowing and similar situations.
tys: Vec<Ty>,
/// Mappings from structural types we've seen to type indices.
///
/// This is used to get the canonical TyIdx of a structural type
/// (including builtin primitives).
///
/// Nominal types (structs) are stored in `envs`, because they
/// go in and out of scope.
ty_map: HashMap<Ty, TyIdx>,
/// Scoped type info, reflecting the fact that struct definitions
/// and variables come in and out of scope.
///
/// These values are "cumulative", so type names and variables
/// should be looked up by searching backwards in this array.
///
/// If nothing is found, that type name / variable name is undefined
/// at this point in the program.
envs: Vec<CheckEnv>,
}
/// Information about types for a specific scope.
#[derive(Debug)]
struct CheckEnv {
/// The struct definitions and TyIdx's
tys: HashMap<Ident, TyIdx>,
}
/// Take a ParsedProgram and produce a TypedProgram for it!
pub fn typeck(comp: &mut Compiler, parsed: &ParsedProgram) -> Result<TypedProgram> {
let mut tcx = TyCtx {
src: comp.source.clone().unwrap(),
tys: vec![],
ty_map: HashMap::new(),
envs: vec![],
};
// Add global builtins
tcx.envs.push(CheckEnv {
tys: HashMap::new(),
});
tcx.add_builtins();
// Put user-defined types in a separate scope just to be safe
tcx.envs.push(CheckEnv {
tys: HashMap::new(),
});
// Add all the user defined types
for (ty_name, _ty_decl) in &parsed.tys {
let _ty_idx = tcx.push_nominal_decl_incomplete(ty_name.clone());
}
for (ty_name, ty_decl) in &parsed.tys {
tcx.complete_nominal_decl(ty_name, ty_decl)?;
}
let funcs = parsed
.funcs
.iter()
.map(|(_func_name, func_decl)| -> Result<Func> {
let inputs = func_decl
.inputs
.iter()
.map(|var| -> Result<Arg> {
let name = var.name.clone().expect("TODO: impl optional names");
let ty = tcx.memoize_ty(&var.ty)?;
Ok(Arg { name, ty })
})
.collect::<Result<Vec<_>>>()?;
let outputs = func_decl
.outputs
.iter()
.map(|var| -> Result<Arg> {
let name = var.name.clone().expect("TODO: impl optional names");
let ty = tcx.memoize_ty(&var.ty)?;
Ok(Arg { name, ty })
})
.collect::<Result<Vec<_>>>()?;
let name = func_decl.name.clone();
let attrs = func_decl.attrs.clone();
Ok(Func {
name,
inputs,
outputs,
attrs,
body: (),
})
})
.collect::<Result<Vec<_>>>()?;
let builtin_funcs_start = parsed.builtin_funcs_start;
Ok(TypedProgram {
tcx,
funcs,
builtin_funcs_start,
})
}
impl TyCtx {
/// Add the builtin types to the TyCtx
fn add_builtins(&mut self) {
let builtins = [
("i8", Ty::Primitive(PrimitiveTy::I8)),
("i16", Ty::Primitive(PrimitiveTy::I16)),
("i32", Ty::Primitive(PrimitiveTy::I32)),
("i64", Ty::Primitive(PrimitiveTy::I64)),
("i128", Ty::Primitive(PrimitiveTy::I128)),
("i256", Ty::Primitive(PrimitiveTy::I256)),
("u8", Ty::Primitive(PrimitiveTy::U8)),
("u16", Ty::Primitive(PrimitiveTy::U16)),
("u32", Ty::Primitive(PrimitiveTy::U32)),
("u64", Ty::Primitive(PrimitiveTy::U64)),
("u128", Ty::Primitive(PrimitiveTy::U128)),
("u256", Ty::Primitive(PrimitiveTy::U256)),
("f16", Ty::Primitive(PrimitiveTy::F16)),
("f32", Ty::Primitive(PrimitiveTy::F32)),
("f64", Ty::Primitive(PrimitiveTy::F64)),
("f128", Ty::Primitive(PrimitiveTy::F128)),
("bool", Ty::Primitive(PrimitiveTy::Bool)),
("ptr", Ty::Primitive(PrimitiveTy::Ptr)),
];
for (ty_name, ty) in builtins {
let ty_idx = self.tys.len();
self.tys.push(ty);
self.envs
.last_mut()
.unwrap()
.tys
.insert(Spanned::from(ty_name.to_owned()), ty_idx);
}
}
/// Register a new nominal struct in this scope.
///
/// This creates a valid TyIdx for the type, but the actual Ty
/// while be garbage (Ty::Empty arbitrarily) and needs to be
/// filled in properly with [`TyCtx::complete_nominal_decl`][].
///
/// This two-phase system is necessary to allow nominal types to
/// be unordered or self-referential.
fn push_nominal_decl_incomplete(&mut self, ty_name: Ident) -> TyIdx {
let ty_idx = self.tys.len();
let dummy_ty = Ty::Empty;
self.tys.push(dummy_ty);
self.envs.last_mut().unwrap().tys.insert(ty_name, ty_idx);
ty_idx
}
/// Complete a nominal decl created with [`TyCtx::push_nominal_decl_incomplete`][].
fn complete_nominal_decl(&mut self, ty_name: &Ident, ty_decl: &TyDecl) -> Result<()> {
// This failing is an ICE and not a user issue!
let ty_idx = self
.resolve_nominal_ty(ty_name)
.expect("completing a nominal ty that hasn't been decl'd");
let ty = self.memoize_nominal_parts(ty_decl)?;
self.tys[ty_idx] = ty;
Ok(())
}
/// Memoize the parts of a nominal ty.
fn memoize_nominal_parts(&mut self, ty_decl: &TyDecl) -> Result<Ty> {
let ty = match ty_decl {
TyDecl::Struct(decl) => {
let fields = decl
.fields
.iter()
.map(|f| {
Ok(FieldTy {
ident: f.name.clone().expect("TODO: implement unnamed fields"),
ty: self.memoize_ty(&f.ty)?,
})
})
.collect::<Result<Vec<_>>>()?;
Ty::Struct(StructTy {
name: decl.name.clone(),
fields,
attrs: decl.attrs.clone(),
})
}
TyDecl::Union(decl) => {
let fields = decl
.fields
.iter()
.map(|f| {
Ok(FieldTy {
ident: f.name.clone().expect("TODO: implement unnamed fields"),
ty: self.memoize_ty(&f.ty)?,
})
})
.collect::<Result<Vec<_>>>()?;
Ty::Union(UnionTy {
name: decl.name.clone(),
fields,
attrs: decl.attrs.clone(),
})
}
TyDecl::Enum(decl) => {
let variants = decl
.variants
.iter()
.map(|v| EnumVariantTy {
name: v.name.clone(),
})
.collect::<Vec<_>>();
Ty::Enum(EnumTy {
name: decl.name.clone(),
variants,
attrs: decl.attrs.clone(),
})
}
TyDecl::Tagged(decl) => {
let variants = decl
.variants
.iter()
.map(|v| {
Ok(TaggedVariantTy {
name: v.name.clone(),
fields: if let Some(fields) = &v.fields {
Some(
fields
.iter()
.map(|f| {
Ok(FieldTy {
ident: f
.name
.clone()
.expect("TODO: implement unnamed fields"),
ty: self.memoize_ty(&f.ty)?,
})
})
.collect::<Result<Vec<_>>>()?,
)
} else {
None
},
})
})
.collect::<Result<Vec<_>>>()?;
Ty::Tagged(TaggedTy {
name: decl.name.clone(),
variants,
attrs: decl.attrs.clone(),
})
}
TyDecl::Alias(decl) => {
let real_ty = self.memoize_ty(&decl.alias)?;
Ty::Alias(AliasTy {
name: decl.name.clone(),
real: real_ty,
attrs: decl.attrs.clone(),
})
}
TyDecl::Pun(decl) => {
let blocks = decl
.blocks
.iter()
.map(|block| {
// !!! If this ever becomes fallible we'll want a proper stack guard to pop!
self.envs.push(CheckEnv {
tys: HashMap::new(),
});
let real_decl = &block.decl;
let real = self.push_nominal_decl_incomplete(decl.name.clone());
self.complete_nominal_decl(&decl.name, real_decl)?;
self.envs.pop();
Ok(PunBlockTy {
selector: block.selector.clone(),
real,
})
})
.collect::<Result<Vec<_>>>()?;
Ty::Pun(PunTy {
name: decl.name.clone(),
blocks,
attrs: decl.attrs.clone(),
})
}
};
Ok(ty)
}
/// Resolve the type id (TyIdx) associated with a nominal type (struct name),
/// at this point in the program.
fn resolve_nominal_ty(&mut self, ty_name: &str) -> Option<TyIdx> {
for (_depth, env) in self.envs.iter_mut().rev().enumerate() {
if let Some(ty) = env.tys.get(ty_name) {
return Some(*ty);
}
}
None
}
/// Converts a TyName (parsed type) into a TyIdx (type id).
///
/// All TyNames in the program must be memoized, as this is the only reliable
/// way to do type comparisons. See the top level docs of TyIdx for details.
fn memoize_ty(&mut self, ty_ref: &Spanned<Tydent>) -> Result<TyIdx> {
let ty_idx = match &**ty_ref {
Tydent::Empty => self.memoize_inner(Ty::Empty),
Tydent::Ref(pointee_ty_ref) => {
let pointee_ty = self.memoize_ty(pointee_ty_ref)?;
self.memoize_inner(Ty::Ref(RefTy { pointee_ty }))
}
Tydent::Array(elem_ty_ref, len) => {
let elem_ty = self.memoize_ty(elem_ty_ref)?;
self.memoize_inner(Ty::Array(ArrayTy { elem_ty, len: *len }))
}
Tydent::Name(name) => {
// Nominal types take a separate path because they're scoped
if let Some(ty_idx) = self.resolve_nominal_ty(name) {
ty_idx
} else {
return Err(KdlScriptTypeError {
message: "use of undefined type name".to_string(),
src: self.src.clone(),
span: Spanned::span(name),
help: None,
})?;
}
}
};
Ok(ty_idx)
}
/// Converts a Ty (structural type with all subtypes resolved) into a TyIdx (type id).
fn memoize_inner(&mut self, ty: Ty) -> TyIdx {
if let Some(idx) = self.ty_map.get(&ty) {
*idx
} else {
let ty1 = ty.clone();
let ty2 = ty;
let idx = self.tys.len();
self.ty_map.insert(ty1, idx);
self.tys.push(ty2);
idx
}
}
/// Get the type-structure (Ty) associated with this type id (TyIdx).
pub fn realize_ty(&self, ty: TyIdx) -> &Ty {
self.tys
.get(ty)
.expect("Internal Compiler Error: invalid TyIdx")
}
/// Resolve a [`PunTy`][] based on the current [`PunEnv`][].
pub fn resolve_pun(&self, pun: &PunTy, env: &PunEnv) -> Result<TyIdx> {
for block in &pun.blocks {
if block.selector.matches(env) {
return Ok(block.real);
}
}
Err(KdlScriptTypeError {
message: "Failed to find applicable pun for this target environment".to_string(),
src: self.src.clone(),
span: Spanned::span(&pun.name),
help: Some(format!("Add another block that matches {:#?}", env)),
})?
}
/*
pub fn pointee_ty(&self, ty: TyIdx) -> TyIdx {
if let Ty::TypedPtr(pointee) = self.realize_ty(ty) {
*pointee
} else {
unreachable!("expected typed to be pointer");
}
}
*/
/// Stringify a type.
pub fn format_ty(&self, ty: TyIdx) -> String {
match self.realize_ty(ty) {
Ty::Primitive(prim) => format!("{:?}", prim).to_lowercase(),
Ty::Empty => "()".to_string(),
Ty::Struct(decl) => format!("{}", decl.name),
Ty::Enum(decl) => format!("{}", decl.name),
Ty::Tagged(decl) => format!("{}", decl.name),
Ty::Union(decl) => format!("{}", decl.name),
Ty::Alias(decl) => format!("{}", decl.name),
Ty::Pun(decl) => format!("{}", decl.name),
Ty::Array(array_ty) => {
let inner = self.format_ty(array_ty.elem_ty);
format!("[{}; {}]", inner, array_ty.len)
}
Ty::Ref(ref_ty) => {
let inner = self.format_ty(ref_ty.pointee_ty);
format!("&{}", inner)
}
}
}
}
/// A node in the DefinitionGraph
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum DefinitionGraphNode {
Func(FuncIdx),
Ty(TyIdx),
}
/// A Dependency Graph of all the type/function definitions.
#[derive(Debug, Clone)]
pub struct DefinitionGraph {
/// The actual Graph
graph: DiGraph<DefinitionGraphNode, ()>,
/// FuncIdx = NodeIdx
func_nodes: Vec<NodeIndex>,
/// The Strongly Connected Components in topological order
def_order: Vec<Vec<NodeIndex>>,
}
impl TypedProgram {
/// Get the Ty for this TyIdx
pub fn realize_ty(&self, ty: TyIdx) -> &Ty {
self.tcx.realize_ty(ty)
}
/// Get the Func for this FuncIdx
pub fn realize_func(&self, func: FuncIdx) -> &Func {
&self.funcs[func]
}
pub fn all_funcs(&self) -> impl Iterator<Item = FuncIdx> {
0..self.builtin_funcs_start
}
/// Resolve a [`PunTy`][] based on the current [`PunEnv`][].
pub fn resolve_pun(&self, pun: &PunTy, env: &PunEnv) -> Result<TyIdx> {
self.tcx.resolve_pun(pun, env)
}
/// Stringify a type (for debugging).
pub fn format_ty(&self, ty: TyIdx) -> String {
self.tcx.format_ty(ty)
}
/// Compute the dependency graph between types ([`DefinitionGraph`][]).
///
/// This serves two purposes:
///
/// * Figuring out the correct order of type/function declarations (and forward declarations)
/// for languages like C that need that kind of thing (and its prettier for other langs).
///
/// * Producing minimized examples for subsets of the program (by only emitting the types
/// needed for a single function).
///
/// The next step in lowering the program is to query [`DefinitionGraph::definitions`][] with the
/// functions you want to emit!
///
/// This can fail if the given [`PunEnv`][] fails to resolve a [`PunTy`][].
pub fn definition_graph(&self, env: &PunEnv) -> Result<DefinitionGraph> {
let mut graph = petgraph::graph::DiGraph::new();
let mut nodes = vec![];
// First create all the nodes for all the types
for (ty_idx, _ty) in self.tcx.tys.iter().enumerate() {
let ty_node = graph.add_node(DefinitionGraphNode::Ty(ty_idx));
nodes.push(ty_node);
}
// Now create edges between them for deps
//
// NOTE: it's fine to make an edge from a node to itself, that doesn't
// change anything we do further down with SCCs!
for (ty_idx, ty) in self.tcx.tys.iter().enumerate() {
let ty_node = nodes[ty_idx];
match ty {
Ty::Struct(ty) => {
for field in &ty.fields {
let field_ty_node = nodes[field.ty];
graph.update_edge(ty_node, field_ty_node, ());
}
}
Ty::Union(ty) => {
for field in &ty.fields {
let field_ty_node = nodes[field.ty];
graph.update_edge(ty_node, field_ty_node, ());
}
}
Ty::Tagged(ty) => {
for variant in &ty.variants {
if let Some(fields) = &variant.fields {
for field in fields {
let field_ty_node = nodes[field.ty];
graph.update_edge(ty_node, field_ty_node, ());
}
}
}
}
Ty::Alias(ty) => {
let real_ty_node = nodes[ty.real];
graph.update_edge(ty_node, real_ty_node, ());
}
Ty::Pun(ty) => {
let real_ty_node = nodes[self.tcx.resolve_pun(ty, env)?];
graph.update_edge(ty_node, real_ty_node, ());
}
Ty::Array(ty) => {
let elem_ty_node = nodes[ty.elem_ty];
graph.update_edge(ty_node, elem_ty_node, ());
}
Ty::Ref(ty) => {
let pointee_ty_node = nodes[ty.pointee_ty];
graph.update_edge(ty_node, pointee_ty_node, ());
}
Ty::Enum(_) => {
// Arguably this can't depend on any types...
// BUT we should consider whether `@tag i32` is a dependency on i32!
// These kinds of annotations aren't configured yet though!
}
Ty::Primitive(_) | Ty::Empty => {
// These types have no deps, no edges to add!
}
}
}
// Add edges from functions to the things they reference
let mut func_nodes = vec![];
for (func_idx, func) in self.funcs.iter().enumerate() {
let func_node = graph.add_node(DefinitionGraphNode::Func(func_idx));
for arg in func.inputs.iter().chain(func.outputs.iter()) {
let arg_ty_node = nodes[arg.ty];
graph.update_edge(func_node, arg_ty_node, ());
}
func_nodes.push(func_node);
}
// Now compute the Strongly Connected Components!
// See the comment in `DefinitionGraph::definitions` for details on what this is!
let def_order = petgraph::algo::kosaraju_scc(&graph);
Ok(DefinitionGraph {
graph,
func_nodes,
def_order,
})
}
}
/// Kinds of definitions/declarations a backend should emit
pub enum Definition {
/// Forward-declare this type
DeclareTy(TyIdx),
/// Define this type fully
DefineTy(TyIdx),
/// Forward-declare the function (only ever necessary with `feature="eval"`)
/// otherwise functions are always roots and never need forward-declares.
DeclareFunc(FuncIdx),
/// Define this function fully
DefineFunc(FuncIdx),
}
impl DefinitionGraph {
/// Get the exact list of forward-declares and definitions to emit the program!
///
/// Note that the recommendations are *extremely* agnostic to the target language
/// and will generally recommend you forward-declare or define a lot of types
/// that need no such thing in basically every language.
///
/// For instance with a definition like:
///
/// ```kdl
/// struct "SelfReferential" {
/// me "Option<&SelfReferential>"
/// val "u32"
/// }
/// ```
///
/// (Generics aren't currently supported, this is just easier to express.)
///
/// You will get recommended something like:
///
/// 1. Define `u32`
/// 2. Forward-declare `SelfReferential`
/// 3. Forward-declare `&SelfReferential`
/// 4. Define `Option<&SelfReferential>`
/// 5. Define `SelfReferential`
/// 6. Define `&SelfReferential`
///
/// Which contains a lot of things that are nonsensical in basically every language!
/// That's ok! Just ignore the nonsensical recommendations like "declare a primitive"
/// or "forward-declare a reference" if they aren't necessary in your language!
///
/// A Rust backend would only need to emit 5 (and maybe 4 if it's not Real Option).
///
/// A C backend would only need to emit 2 and 5 (and maybe 4 if it's not Real Option).
pub fn definitions(&self, funcs: impl IntoIterator<Item = FuncIdx>) -> Vec<Definition> {
// Take the requested functions and compute all their dependencies!
let mut reachable = std::collections::HashSet::new();
petgraph::visit::depth_first_search(
&self.graph,
funcs.into_iter().map(|f| self.func_nodes[f]),
|event| {
if let petgraph::visit::DfsEvent::Discover(node, _) = event {
reachable.insert(node);
}
},
);
// Languages like C and C++ require types to be defined before they're used,
// so we need to build a dependency graph between types and functions and
// compute the topological sort. Unfortunately, types don't necessarily
// form a DAG, so how do we do this!?
//
// An "SCC" algorithm gives us a topo-sort of our graph as a DAG,
// but if there are any cycles then they get grouped together into one Mega Node
// called a "Strongly Connected Component" (defined as "every node in an SCC can
// reach every other node in the SCC"). This is why our toposort has elements that
// are Vec<Node> instead of just Node. The order of elements within an SCC
// is arbitrary because they're basically a dependency soup.
//
// If the graph is a proper DAG then every inner Vec will have one element. Otherwise
// cycles will be "hidden" by cramming it into a Vec. In the limit everything will
// get crammed into one inner Vec and that basically tells you everything is super
// fucked.
//
// To unfuck an SCC, languages like C and C++ have "forward declarations" that let
// you reserve a type name before actually specifying its definition. This breaks
// the dependency cycle. Determining the optimal forward declarations is NP-Hard,
// so we opt for the conservative solution of "emit a forward decl for everything
// in the SCC except for 1 node", which is necessary and sufficient if the SCC
// is the complete graph on N nodes.
let mut output = vec![];
for component in &self.def_order {
// Get all the nodes in this SCC, and filter out the ones not reachable from
// the functions we want to emit. (Filtering lets us emit minimal examples for
// test failures so it's easy to reproduce/report!)
let nodes = component.iter().filter(|n| reachable.contains(*n));
// Emit forward decls for everything but the first node
// Note that this cutely does The Right thing (no forward decl)
// for the "happy" case of an SCC of one node (proper DAG).
for &node_idx in nodes.clone().skip(1) {
let node = &self.graph[node_idx];
match *node {
DefinitionGraphNode::Func(func_idx) => {
output.push(Definition::DeclareFunc(func_idx));
}
DefinitionGraphNode::Ty(ty_idx) => {
output.push(Definition::DeclareTy(ty_idx));
}
}
}
// Now that cycles have been broken with forward declares, we can
// just emit everything in the SCC. Note that we emit the type we
// *didn't* forward-declare first. All of its dependencies have
// been resolved by the forward-declares, but it still needs to be
// defined before anyone else in case they refer to it!
for &node_idx in nodes {
let node = &self.graph[node_idx];
match *node {
DefinitionGraphNode::Func(func_idx) => {
output.push(Definition::DefineFunc(func_idx));
}
DefinitionGraphNode::Ty(ty_idx) => {
output.push(Definition::DefineTy(ty_idx));
}
}
}
}
output
}
}