1use std::f64::consts::PI;
2
3use kittycad_modeling_cmds::{shared::Angle, units::UnitLength};
4
5use super::args::TyF64;
6use crate::execution::types::NumericType;
7
8pub(crate) fn untype_point(p: [TyF64; 2]) -> ([f64; 2], NumericType) {
9 let (x, y, ty) = NumericType::combine_eq_coerce(p[0].clone(), p[1].clone());
10 ([x, y], ty)
11}
12
13pub(crate) fn untype_array<const N: usize>(p: [TyF64; N]) -> ([f64; N], NumericType) {
14 let (vec, ty) = NumericType::combine_eq_array(&p);
15 (
16 vec.try_into()
17 .unwrap_or_else(|v: Vec<f64>| panic!("Expected a Vec of length {} but it was {}", N, v.len())),
18 ty,
19 )
20}
21
22pub(crate) fn point_to_mm(p: [TyF64; 2]) -> [f64; 2] {
23 [p[0].to_mm(), p[1].to_mm()]
24}
25
26pub(crate) fn untyped_point_to_mm(p: [f64; 2], units: UnitLength) -> [f64; 2] {
27 [
28 crate::execution::types::adjust_length(units, p[0], UnitLength::Millimeters).0,
29 crate::execution::types::adjust_length(units, p[1], UnitLength::Millimeters).0,
30 ]
31}
32
33pub(crate) fn point_to_len_unit(p: [TyF64; 2], len: UnitLength) -> [f64; 2] {
34 [p[0].to_length_units(len), p[1].to_length_units(len)]
35}
36
37pub(crate) fn point_to_typed(p: [f64; 2], len: UnitLength) -> [TyF64; 2] {
39 [TyF64::new(p[0], len.into()), TyF64::new(p[1], len.into())]
40}
41
42pub(crate) fn point_3d_to_mm(p: [TyF64; 3]) -> [f64; 3] {
43 [p[0].to_mm(), p[1].to_mm(), p[2].to_mm()]
44}
45
46pub(crate) fn distance(a: Coords2d, b: Coords2d) -> f64 {
48 ((b[0] - a[0]).powi(2) + (b[1] - a[1]).powi(2)).sqrt()
49}
50
51pub(crate) fn between(a: Coords2d, b: Coords2d) -> Angle {
53 let x = b[0] - a[0];
54 let y = b[1] - a[1];
55 normalize(Angle::from_radians(libm::atan2(y, x)))
56}
57
58pub(crate) fn normalize(angle: Angle) -> Angle {
60 let deg = angle.to_degrees();
61 let result = ((deg % 360.0) + 360.0) % 360.0;
62 Angle::from_degrees(if result > 180.0 { result - 360.0 } else { result })
63}
64
65pub(crate) fn delta(from_angle: Angle, to_angle: Angle) -> Angle {
81 let norm_from_angle = normalize_rad(from_angle.to_radians());
82 let norm_to_angle = normalize_rad(to_angle.to_radians());
83 let provisional = norm_to_angle - norm_from_angle;
84
85 if provisional > -PI && provisional <= PI {
86 return Angle::from_radians(provisional);
87 }
88 if provisional > PI {
89 return Angle::from_radians(provisional - 2.0 * PI);
90 }
91 if provisional < -PI {
92 return Angle::from_radians(provisional + 2.0 * PI);
93 }
94 Angle::default()
95}
96
97pub(crate) fn normalize_rad(angle: f64) -> f64 {
98 let draft = angle % (2.0 * PI);
99 if draft < 0.0 { draft + 2.0 * PI } else { draft }
100}
101
102fn calculate_intersection_of_two_lines(line1: &[Coords2d; 2], line2_angle: f64, line2_point: Coords2d) -> Coords2d {
103 let line2_point_b = [
104 line2_point[0] + libm::cos(line2_angle.to_radians()) * 10.0,
105 line2_point[1] + libm::sin(line2_angle.to_radians()) * 10.0,
106 ];
107 intersect(line1[0], line1[1], line2_point, line2_point_b)
108}
109
110fn intersect(p1: Coords2d, p2: Coords2d, p3: Coords2d, p4: Coords2d) -> Coords2d {
111 let slope = |p1: Coords2d, p2: Coords2d| (p1[1] - p2[1]) / (p1[0] - p2[0]);
112 let constant = |p1: Coords2d, p2: Coords2d| p1[1] - slope(p1, p2) * p1[0];
113 let get_y = |for_x: f64, p1: Coords2d, p2: Coords2d| slope(p1, p2) * for_x + constant(p1, p2);
114
115 if p1[0] == p2[0] {
116 return [p1[0], get_y(p1[0], p3, p4)];
117 }
118 if p3[0] == p4[0] {
119 return [p3[0], get_y(p3[0], p1, p2)];
120 }
121
122 let x = (constant(p3, p4) - constant(p1, p2)) / (slope(p1, p2) - slope(p3, p4));
123 let y = get_y(x, p1, p2);
124 [x, y]
125}
126
127pub(crate) fn intersection_with_parallel_line(
128 line1: &[Coords2d; 2],
129 line1_offset: f64,
130 line2_angle: f64,
131 line2_point: Coords2d,
132) -> Coords2d {
133 calculate_intersection_of_two_lines(&offset_line(line1_offset, line1[0], line1[1]), line2_angle, line2_point)
134}
135
136fn offset_line(offset: f64, p1: Coords2d, p2: Coords2d) -> [Coords2d; 2] {
137 if p1[0] == p2[0] {
138 let direction = (p1[1] - p2[1]).signum();
139 return [[p1[0] + offset * direction, p1[1]], [p2[0] + offset * direction, p2[1]]];
140 }
141 if p1[1] == p2[1] {
142 let direction = (p2[0] - p1[0]).signum();
143 return [[p1[0], p1[1] + offset * direction], [p2[0], p2[1] + offset * direction]];
144 }
145 let x_offset = offset / libm::sin(libm::atan2(p1[1] - p2[1], p1[0] - p2[0]));
146 [[p1[0] + x_offset, p1[1]], [p2[0] + x_offset, p2[1]]]
147}
148
149pub(crate) fn get_y_component(angle: Angle, x: f64) -> Coords2d {
150 let normalised_angle = ((angle.to_degrees() % 360.0) + 360.0) % 360.0; let y = x * libm::tan(normalised_angle.to_radians());
152 let sign = if normalised_angle > 90.0 && normalised_angle <= 270.0 {
153 -1.0
154 } else {
155 1.0
156 };
157 [x * sign, y * sign]
158}
159
160pub(crate) fn get_x_component(angle: Angle, y: f64) -> Coords2d {
161 let normalised_angle = ((angle.to_degrees() % 360.0) + 360.0) % 360.0; let x = y / libm::tan(normalised_angle.to_radians());
163 let sign = if normalised_angle > 180.0 && normalised_angle <= 360.0 {
164 -1.0
165 } else {
166 1.0
167 };
168 [x * sign, y * sign]
169}
170
171pub(crate) fn arc_center_and_end(
172 from: Coords2d,
173 start_angle: Angle,
174 end_angle: Angle,
175 radius: f64,
176) -> (Coords2d, Coords2d) {
177 let start_angle = start_angle.to_radians();
178 let end_angle = end_angle.to_radians();
179
180 let center = [
181 -(radius * libm::cos(start_angle) - from[0]),
182 -(radius * libm::sin(start_angle) - from[1]),
183 ];
184
185 let end = [
186 center[0] + radius * libm::cos(end_angle),
187 center[1] + radius * libm::sin(end_angle),
188 ];
189
190 (center, end)
191}
192
193pub(crate) fn calculate_circle_center(p1: [f64; 2], p2: [f64; 2], p3: [f64; 2]) -> [f64; 2] {
196 let (x1, y1) = (p1[0], p1[1]);
197 let (x2, y2) = (p2[0], p2[1]);
198 let (x3, y3) = (p3[0], p3[1]);
199
200 let d = 2.0 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2));
204
205 if d.abs() < f64::EPSILON {
207 return [(x1 + x2 + x3) / 3.0, (y1 + y2 + y3) / 3.0];
208 }
209
210 let p1_sq = x1 * x1 + y1 * y1;
212 let p2_sq = x2 * x2 + y2 * y2;
213 let p3_sq = x3 * x3 + y3 * y3;
214
215 [
221 (p1_sq * (y2 - y3) + p2_sq * (y3 - y1) + p3_sq * (y1 - y2)) / d,
222 (p1_sq * (x3 - x2) + p2_sq * (x1 - x3) + p3_sq * (x2 - x1)) / d,
223 ]
224}
225
226pub struct CircleParams {
227 pub center: Coords2d,
228 pub radius: f64,
229}
230
231pub fn calculate_circle_from_3_points(points: [Coords2d; 3]) -> CircleParams {
232 let center = calculate_circle_center(points[0], points[1], points[2]);
233 CircleParams {
234 center,
235 radius: distance(center, points[1]),
236 }
237}
238
239#[cfg(test)]
240mod tests {
241 use std::f64::consts::TAU;
243
244 use approx::assert_relative_eq;
245 use pretty_assertions::assert_eq;
246
247 use super::{Angle, calculate_circle_center, get_x_component, get_y_component};
248
249 static EACH_QUAD: [(i32, [i32; 2]); 12] = [
250 (-315, [1, 1]),
251 (-225, [-1, 1]),
252 (-135, [-1, -1]),
253 (-45, [1, -1]),
254 (45, [1, 1]),
255 (135, [-1, 1]),
256 (225, [-1, -1]),
257 (315, [1, -1]),
258 (405, [1, 1]),
259 (495, [-1, 1]),
260 (585, [-1, -1]),
261 (675, [1, -1]),
262 ];
263
264 #[test]
265 fn test_get_y_component() {
266 let mut expected = Vec::new();
267 let mut results = Vec::new();
268
269 for &(angle, expected_result) in EACH_QUAD.iter() {
270 let res = get_y_component(Angle::from_degrees(angle as f64), 1.0);
271 results.push([res[0].round() as i32, res[1].round() as i32]);
272 expected.push(expected_result);
273 }
274
275 assert_eq!(results, expected);
276
277 let result = get_y_component(Angle::zero(), 1.0);
278 assert_eq!(result[0] as i32, 1);
279 assert_eq!(result[1] as i32, 0);
280
281 let result = get_y_component(Angle::from_degrees(90.0), 1.0);
282 assert_eq!(result[0] as i32, 1);
283 assert!(result[1] > 100000.0);
284
285 let result = get_y_component(Angle::from_degrees(180.0), 1.0);
286 assert_eq!(result[0] as i32, -1);
287 assert!((result[1] - 0.0).abs() < f64::EPSILON);
288
289 let result = get_y_component(Angle::from_degrees(270.0), 1.0);
290 assert_eq!(result[0] as i32, -1);
291 assert!(result[1] < -100000.0);
292 }
293
294 #[test]
295 fn test_get_x_component() {
296 let mut expected = Vec::new();
297 let mut results = Vec::new();
298
299 for &(angle, expected_result) in EACH_QUAD.iter() {
300 let res = get_x_component(Angle::from_degrees(angle as f64), 1.0);
301 results.push([res[0].round() as i32, res[1].round() as i32]);
302 expected.push(expected_result);
303 }
304
305 assert_eq!(results, expected);
306
307 let result = get_x_component(Angle::zero(), 1.0);
308 assert!(result[0] > 100000.0);
309 assert_eq!(result[1] as i32, 1);
310
311 let result = get_x_component(Angle::from_degrees(90.0), 1.0);
312 assert!((result[0] - 0.0).abs() < f64::EPSILON);
313 assert_eq!(result[1] as i32, 1);
314
315 let result = get_x_component(Angle::from_degrees(180.0), 1.0);
316 assert!(result[0] < -100000.0);
317 assert_eq!(result[1] as i32, 1);
318
319 let result = get_x_component(Angle::from_degrees(270.0), 1.0);
320 assert!((result[0] - 0.0).abs() < f64::EPSILON);
321 assert_eq!(result[1] as i32, -1);
322 }
323
324 #[test]
325 fn test_arc_center_and_end() {
326 let (center, end) = super::arc_center_and_end([0.0, 0.0], Angle::zero(), Angle::from_degrees(90.0), 1.0);
327 assert_eq!(center[0].round(), -1.0);
328 assert_eq!(center[1], 0.0);
329 assert_eq!(end[0].round(), -1.0);
330 assert_eq!(end[1], 1.0);
331
332 let (center, end) = super::arc_center_and_end([0.0, 0.0], Angle::zero(), Angle::from_degrees(180.0), 1.0);
333 assert_eq!(center[0].round(), -1.0);
334 assert_eq!(center[1], 0.0);
335 assert_eq!(end[0].round(), -2.0);
336 assert_eq!(end[1].round(), 0.0);
337
338 let (center, end) = super::arc_center_and_end([0.0, 0.0], Angle::zero(), Angle::from_degrees(180.0), 10.0);
339 assert_eq!(center[0].round(), -10.0);
340 assert_eq!(center[1], 0.0);
341 assert_eq!(end[0].round(), -20.0);
342 assert_eq!(end[1].round(), 0.0);
343 }
344
345 #[test]
346 fn test_calculate_circle_center() {
347 const EPS: f64 = 1e-4;
348
349 let p1 = [1.0, 2.0];
351 let p2 = [4.0, 5.0];
352 let p3 = [7.0, 3.0];
353 let center = calculate_circle_center(p1, p2, p3);
354 assert_relative_eq!(center[0], 4.1, epsilon = EPS);
355 assert_relative_eq!(center[1], 1.9, epsilon = EPS);
356
357 let center = [3.2, 0.7];
359 let radius_array = [0.001, 0.01, 0.6, 1.0, 5.0, 60.0, 500.0, 2000.0, 400_000.0];
360 let points_array = [[0.0, 0.33, 0.66], [0.0, 0.1, 0.2], [0.0, -0.1, 0.1], [0.0, 0.5, 0.7]];
361
362 let get_point = |radius: f64, t: f64| {
363 let angle = t * TAU;
364 [
365 center[0] + radius * libm::cos(angle),
366 center[1] + radius * libm::sin(angle),
367 ]
368 };
369
370 for radius in radius_array {
371 for point in points_array {
372 let p1 = get_point(radius, point[0]);
373 let p2 = get_point(radius, point[1]);
374 let p3 = get_point(radius, point[2]);
375 let c = calculate_circle_center(p1, p2, p3);
376 assert_relative_eq!(c[0], center[0], epsilon = EPS);
377 assert_relative_eq!(c[1], center[1], epsilon = EPS);
378 }
379 }
380
381 let p1 = [0.0, 0.0];
383 let p2 = [1.0, 0.0];
384 let p3 = [0.5, 3.0_f64.sqrt() / 2.0];
385 let center = calculate_circle_center(p1, p2, p3);
386 assert_relative_eq!(center[0], 0.5, epsilon = EPS);
387 assert_relative_eq!(center[1], 1.0 / (2.0 * 3.0_f64.sqrt()), epsilon = EPS);
388
389 let p1 = [0.0, 0.0];
391 let p2 = [1.0, 0.0];
392 let p3 = [2.0, 0.0];
393 let center = calculate_circle_center(p1, p2, p3);
394 assert_relative_eq!(center[0], 1.0, epsilon = EPS);
395 assert_relative_eq!(center[1], 0.0, epsilon = EPS);
396
397 let p1 = [0.0, 0.0];
399 let p2 = [0.0, 2.0];
400 let p3 = [2.0, 0.0];
401 let center = calculate_circle_center(p1, p2, p3);
402 assert_relative_eq!(center[0], 1.0, epsilon = EPS);
403 assert_relative_eq!(center[1], 1.0, epsilon = EPS);
404
405 let p1 = [0.0, 0.0];
407 let p2 = [0.0, 6.0];
408 let p3 = [6.0, 0.0];
409 let center = calculate_circle_center(p1, p2, p3);
410 assert_relative_eq!(center[0], 3.0, epsilon = EPS);
411 assert_relative_eq!(center[1], 3.0, epsilon = EPS);
412 let radius = ((center[0] - p1[0]).powi(2) + (center[1] - p1[1]).powi(2)).sqrt();
414 assert_relative_eq!(radius, 3.0 * 2.0_f64.sqrt(), epsilon = EPS);
415 }
416}
417
418pub(crate) type Coords2d = [f64; 2];
419
420pub fn is_points_ccw_wasm(points: &[f64]) -> i32 {
421 let mut sum = 0.0;
424 for i in 0..(points.len() / 2) {
425 let point1 = [points[2 * i], points[2 * i + 1]];
426 let point2 = [points[(2 * i + 2) % points.len()], points[(2 * i + 3) % points.len()]];
427 sum += (point2[0] + point1[0]) * (point2[1] - point1[1]);
428 }
429 sum.signum() as i32
430}
431
432pub(crate) fn is_points_ccw(points: &[Coords2d]) -> i32 {
433 let flattened_points: Vec<f64> = points.iter().flat_map(|&p| vec![p[0], p[1]]).collect();
434 is_points_ccw_wasm(&flattened_points)
435}
436
437fn get_slope(start: Coords2d, end: Coords2d) -> (f64, f64) {
438 let slope = if start[0] - end[0] == 0.0 {
439 f64::INFINITY
440 } else {
441 (start[1] - end[1]) / (start[0] - end[0])
442 };
443
444 let perp_slope = if slope == f64::INFINITY { 0.0 } else { -1.0 / slope };
445
446 (slope, perp_slope)
447}
448
449fn get_angle(point1: Coords2d, point2: Coords2d) -> f64 {
450 let delta_x = point2[0] - point1[0];
451 let delta_y = point2[1] - point1[1];
452 let angle = libm::atan2(delta_y, delta_x);
453
454 let result = if angle < 0.0 { angle + 2.0 * PI } else { angle };
455 result * (180.0 / PI)
456}
457
458fn delta_angle(from_angle: f64, to_angle: f64) -> f64 {
459 let norm_from_angle = normalize_rad(from_angle);
460 let norm_to_angle = normalize_rad(to_angle);
461 let provisional = norm_to_angle - norm_from_angle;
462
463 if provisional > -PI && provisional <= PI {
464 provisional
465 } else if provisional > PI {
466 provisional - 2.0 * PI
467 } else if provisional < -PI {
468 provisional + 2.0 * PI
469 } else {
470 provisional
471 }
472}
473
474fn deg2rad(deg: f64) -> f64 {
475 deg * (PI / 180.0)
476}
477
478fn get_mid_point(
479 center: Coords2d,
480 arc_start_point: Coords2d,
481 arc_end_point: Coords2d,
482 tan_previous_point: Coords2d,
483 radius: f64,
484 obtuse: bool,
485) -> Coords2d {
486 let angle_from_center_to_arc_start = get_angle(center, arc_start_point);
487 let angle_from_center_to_arc_end = get_angle(center, arc_end_point);
488 let delta_ang = delta_angle(
489 deg2rad(angle_from_center_to_arc_start),
490 deg2rad(angle_from_center_to_arc_end),
491 );
492 let delta_ang = delta_ang / 2.0 + deg2rad(angle_from_center_to_arc_start);
493 let shortest_arc_mid_point: Coords2d = [
494 libm::cos(delta_ang) * radius + center[0],
495 libm::sin(delta_ang) * radius + center[1],
496 ];
497 let opposite_delta = delta_ang + PI;
498 let longest_arc_mid_point: Coords2d = [
499 libm::cos(opposite_delta) * radius + center[0],
500 libm::sin(opposite_delta) * radius + center[1],
501 ];
502
503 let rotation_direction_original_points = is_points_ccw(&[tan_previous_point, arc_start_point, arc_end_point]);
504 let rotation_direction_points_on_arc = is_points_ccw(&[arc_start_point, shortest_arc_mid_point, arc_end_point]);
505 if rotation_direction_original_points != rotation_direction_points_on_arc && obtuse {
506 longest_arc_mid_point
507 } else {
508 shortest_arc_mid_point
509 }
510}
511
512fn intersect_point_n_slope(point1: Coords2d, slope1: f64, point2: Coords2d, slope2: f64) -> Coords2d {
513 let x = if slope1.abs() == f64::INFINITY {
514 point1[0]
515 } else if slope2.abs() == f64::INFINITY {
516 point2[0]
517 } else {
518 (point2[1] - slope2 * point2[0] - point1[1] + slope1 * point1[0]) / (slope1 - slope2)
519 };
520 let y = if slope1.abs() != f64::INFINITY {
521 slope1 * x - slope1 * point1[0] + point1[1]
522 } else {
523 slope2 * x - slope2 * point2[0] + point2[1]
524 };
525 [x, y]
526}
527
528pub struct TangentialArcInfoInput {
530 pub arc_start_point: Coords2d,
532 pub arc_end_point: Coords2d,
534 pub tan_previous_point: Coords2d,
536 pub obtuse: bool,
538}
539
540pub struct TangentialArcInfoOutput {
542 pub center: Coords2d,
544 pub arc_mid_point: Coords2d,
546 pub radius: f64,
548 pub start_angle: f64,
550 pub end_angle: f64,
552 pub ccw: i32,
554 pub arc_length: f64,
556}
557
558pub fn get_tangential_arc_to_info(input: TangentialArcInfoInput) -> TangentialArcInfoOutput {
562 let (_, perp_slope) = get_slope(input.tan_previous_point, input.arc_start_point);
563 let tangential_line_perp_slope = perp_slope;
564
565 let mid_point: Coords2d = [
567 (input.arc_start_point[0] + input.arc_end_point[0]) / 2.0,
568 (input.arc_start_point[1] + input.arc_end_point[1]) / 2.0,
569 ];
570
571 let slope_mid_point_line = get_slope(input.arc_start_point, mid_point);
572
573 let center: Coords2d;
574 let radius: f64;
575
576 if tangential_line_perp_slope == slope_mid_point_line.0 {
577 center = mid_point;
580 radius =
581 ((input.arc_start_point[0] - center[0]).powi(2) + (input.arc_start_point[1] - center[1]).powi(2)).sqrt();
582 } else {
583 center = intersect_point_n_slope(
584 mid_point,
585 slope_mid_point_line.1,
586 input.arc_start_point,
587 tangential_line_perp_slope,
588 );
589 radius =
590 ((input.arc_start_point[0] - center[0]).powi(2) + (input.arc_start_point[1] - center[1]).powi(2)).sqrt();
591 }
592
593 let arc_mid_point = get_mid_point(
594 center,
595 input.arc_start_point,
596 input.arc_end_point,
597 input.tan_previous_point,
598 radius,
599 input.obtuse,
600 );
601
602 let start_angle = libm::atan2(
603 input.arc_start_point[1] - center[1],
604 input.arc_start_point[0] - center[0],
605 );
606 let end_angle = libm::atan2(input.arc_end_point[1] - center[1], input.arc_end_point[0] - center[0]);
607 let ccw = is_points_ccw(&[input.arc_start_point, arc_mid_point, input.arc_end_point]);
608
609 let arc_mid_angle = libm::atan2(arc_mid_point[1] - center[1], arc_mid_point[0] - center[0]);
610 let start_to_mid_arc_length = radius
611 * delta(Angle::from_radians(start_angle), Angle::from_radians(arc_mid_angle))
612 .to_radians()
613 .abs();
614 let mid_to_end_arc_length = radius
615 * delta(Angle::from_radians(arc_mid_angle), Angle::from_radians(end_angle))
616 .to_radians()
617 .abs();
618 let arc_length = start_to_mid_arc_length + mid_to_end_arc_length;
619
620 TangentialArcInfoOutput {
621 center,
622 radius,
623 arc_mid_point,
624 start_angle,
625 end_angle,
626 ccw,
627 arc_length,
628 }
629}
630
631#[cfg(test)]
632mod get_tangential_arc_to_info_tests {
633 use approx::assert_relative_eq;
634
635 use super::*;
636
637 fn round_to_three_decimals(num: f64) -> f64 {
638 (num * 1000.0).round() / 1000.0
639 }
640
641 #[test]
642 fn test_basic_case() {
643 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
644 tan_previous_point: [0.0, -5.0],
645 arc_start_point: [0.0, 0.0],
646 arc_end_point: [4.0, 0.0],
647 obtuse: true,
648 });
649 assert_relative_eq!(result.center[0], 2.0);
650 assert_relative_eq!(result.center[1], 0.0);
651 assert_relative_eq!(result.arc_mid_point[0], 2.0);
652 assert_relative_eq!(result.arc_mid_point[1], 2.0);
653 assert_relative_eq!(result.radius, 2.0);
654 assert_relative_eq!(result.start_angle, PI);
655 assert_relative_eq!(result.end_angle, 0.0);
656 assert_eq!(result.ccw, -1);
657 }
658
659 #[test]
660 fn basic_case_with_arc_centered_at_0_0_and_the_tangential_line_being_45_degrees() {
661 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
662 tan_previous_point: [0.0, -4.0],
663 arc_start_point: [2.0, -2.0],
664 arc_end_point: [-2.0, 2.0],
665 obtuse: true,
666 });
667 assert_relative_eq!(result.center[0], 0.0);
668 assert_relative_eq!(result.center[1], 0.0);
669 assert_relative_eq!(round_to_three_decimals(result.arc_mid_point[0]), 2.0);
670 assert_relative_eq!(round_to_three_decimals(result.arc_mid_point[1]), 2.0);
671 assert_relative_eq!(result.radius, (2.0f64 * 2.0 + 2.0 * 2.0).sqrt());
672 assert_relative_eq!(result.start_angle, -PI / 4.0);
673 assert_relative_eq!(result.end_angle, 3.0 * PI / 4.0);
674 assert_eq!(result.ccw, 1);
675 }
676
677 #[test]
678 fn test_get_tangential_arc_to_info_moving_arc_end_point() {
679 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
680 tan_previous_point: [0.0, -4.0],
681 arc_start_point: [2.0, -2.0],
682 arc_end_point: [2.0, 2.0],
683 obtuse: true,
684 });
685 let expected_radius = (2.0f64 * 2.0 + 2.0 * 2.0).sqrt();
686 assert_relative_eq!(round_to_three_decimals(result.center[0]), 0.0);
687 assert_relative_eq!(result.center[1], 0.0);
688 assert_relative_eq!(result.arc_mid_point[0], expected_radius);
689 assert_relative_eq!(round_to_three_decimals(result.arc_mid_point[1]), -0.0);
690 assert_relative_eq!(result.radius, expected_radius);
691 assert_relative_eq!(result.start_angle, -PI / 4.0);
692 assert_relative_eq!(result.end_angle, PI / 4.0);
693 assert_eq!(result.ccw, 1);
694 }
695
696 #[test]
697 fn test_get_tangential_arc_to_info_moving_arc_end_point_again() {
698 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
699 tan_previous_point: [0.0, -4.0],
700 arc_start_point: [2.0, -2.0],
701 arc_end_point: [-2.0, -2.0],
702 obtuse: true,
703 });
704 let expected_radius = (2.0f64 * 2.0 + 2.0 * 2.0).sqrt();
705 assert_relative_eq!(result.center[0], 0.0);
706 assert_relative_eq!(result.center[1], 0.0);
707 assert_relative_eq!(result.radius, expected_radius);
708 assert_relative_eq!(round_to_three_decimals(result.arc_mid_point[0]), 0.0);
709 assert_relative_eq!(result.arc_mid_point[1], expected_radius);
710 assert_relative_eq!(result.start_angle, -PI / 4.0);
711 assert_relative_eq!(result.end_angle, -3.0 * PI / 4.0);
712 assert_eq!(result.ccw, 1);
713 }
714
715 #[test]
716 fn test_get_tangential_arc_to_info_acute_moving_arc_end_point() {
717 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
718 tan_previous_point: [0.0, -4.0],
719 arc_start_point: [2.0, -2.0],
720 arc_end_point: [-2.0, -2.0],
721 obtuse: false,
722 });
723 let expected_radius = (2.0f64 * 2.0 + 2.0 * 2.0).sqrt();
724 assert_relative_eq!(result.center[0], 0.0);
725 assert_relative_eq!(result.center[1], 0.0);
726 assert_relative_eq!(result.radius, expected_radius);
727 assert_relative_eq!(round_to_three_decimals(result.arc_mid_point[0]), -0.0);
728 assert_relative_eq!(result.arc_mid_point[1], -expected_radius);
729 assert_relative_eq!(result.start_angle, -PI / 4.0);
730 assert_relative_eq!(result.end_angle, -3.0 * PI / 4.0);
731 assert_eq!(result.ccw, -1);
733 }
734
735 #[test]
736 fn test_get_tangential_arc_to_info_obtuse_with_wrap_around() {
737 let arc_end = libm::cos(std::f64::consts::PI / 4.0) * 2.0;
738 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
739 tan_previous_point: [2.0, -4.0],
740 arc_start_point: [2.0, 0.0],
741 arc_end_point: [0.0, -2.0],
742 obtuse: true,
743 });
744 assert_relative_eq!(result.center[0], -0.0);
745 assert_relative_eq!(result.center[1], 0.0);
746 assert_relative_eq!(result.radius, 2.0);
747 assert_relative_eq!(result.arc_mid_point[0], -arc_end);
748 assert_relative_eq!(result.arc_mid_point[1], arc_end);
749 assert_relative_eq!(result.start_angle, 0.0);
750 assert_relative_eq!(result.end_angle, -PI / 2.0);
751 assert_eq!(result.ccw, 1);
752 }
753
754 #[test]
755 fn test_arc_length_obtuse_cw() {
756 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
757 tan_previous_point: [-1.0, -1.0],
758 arc_start_point: [-1.0, 0.0],
759 arc_end_point: [0.0, -1.0],
760 obtuse: true,
761 });
762 let circumference = 2.0 * PI * result.radius;
763 let expected_length = circumference * 3.0 / 4.0; assert_relative_eq!(result.arc_length, expected_length);
765 }
766
767 #[test]
768 fn test_arc_length_acute_cw() {
769 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
770 tan_previous_point: [-1.0, -1.0],
771 arc_start_point: [-1.0, 0.0],
772 arc_end_point: [0.0, 1.0],
773 obtuse: true,
774 });
775 let circumference = 2.0 * PI * result.radius;
776 let expected_length = circumference / 4.0; assert_relative_eq!(result.arc_length, expected_length);
778 }
779
780 #[test]
781 fn test_arc_length_obtuse_ccw() {
782 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
783 tan_previous_point: [1.0, -1.0],
784 arc_start_point: [1.0, 0.0],
785 arc_end_point: [0.0, -1.0],
786 obtuse: true,
787 });
788 let circumference = 2.0 * PI * result.radius;
789 let expected_length = circumference * 3.0 / 4.0; assert_relative_eq!(result.arc_length, expected_length);
791 }
792
793 #[test]
794 fn test_arc_length_acute_ccw() {
795 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
796 tan_previous_point: [1.0, -1.0],
797 arc_start_point: [1.0, 0.0],
798 arc_end_point: [0.0, 1.0],
799 obtuse: true,
800 });
801 let circumference = 2.0 * PI * result.radius;
802 let expected_length = circumference / 4.0; assert_relative_eq!(result.arc_length, expected_length);
804 }
805}
806
807pub(crate) fn get_tangent_point_from_previous_arc(
808 last_arc_center: Coords2d,
809 last_arc_ccw: bool,
810 last_arc_end: Coords2d,
811) -> Coords2d {
812 let angle_from_old_center_to_arc_start = get_angle(last_arc_center, last_arc_end);
813 let tangential_angle = angle_from_old_center_to_arc_start + if last_arc_ccw { -90.0 } else { 90.0 };
814 [
816 libm::cos(tangential_angle.to_radians()) * 10.0 + last_arc_end[0],
817 libm::sin(tangential_angle.to_radians()) * 10.0 + last_arc_end[1],
818 ]
819}