1use std::f64::consts::PI;
2
3use kittycad_modeling_cmds::shared::Angle;
4
5use super::args::TyF64;
6use crate::execution::types::{NumericType, UnitLen};
7
8pub(crate) fn untype_point(p: [TyF64; 2]) -> ([f64; 2], NumericType) {
9 let (x, y, ty) = NumericType::combine_eq_coerce(p[0].clone(), p[1].clone());
10 ([x, y], ty)
11}
12
13pub(crate) fn point_to_mm(p: [TyF64; 2]) -> [f64; 2] {
14 [p[0].to_mm(), p[1].to_mm()]
15}
16
17pub(crate) fn untyped_point_to_mm(p: [f64; 2], units: UnitLen) -> [f64; 2] {
18 assert_ne!(units, UnitLen::Unknown);
19 [
20 units.adjust_to(p[0], UnitLen::Mm).0,
21 units.adjust_to(p[1], UnitLen::Mm).0,
22 ]
23}
24
25pub(crate) fn point_to_len_unit(p: [TyF64; 2], len: UnitLen) -> [f64; 2] {
26 [p[0].to_length_units(len), p[1].to_length_units(len)]
27}
28
29pub(crate) fn point_to_typed(p: [f64; 2], len: UnitLen) -> [TyF64; 2] {
31 [TyF64::new(p[0], len.into()), TyF64::new(p[1], len.into())]
32}
33
34pub(crate) fn point_3d_to_mm(p: [TyF64; 3]) -> [f64; 3] {
35 [p[0].to_mm(), p[1].to_mm(), p[2].to_mm()]
36}
37
38pub(crate) fn distance(a: Coords2d, b: Coords2d) -> f64 {
40 ((b[0] - a[0]).powi(2) + (b[1] - a[1]).powi(2)).sqrt()
41}
42
43pub(crate) fn between(a: Coords2d, b: Coords2d) -> Angle {
45 let x = b[0] - a[0];
46 let y = b[1] - a[1];
47 normalize(Angle::from_radians(y.atan2(x)))
48}
49
50pub(crate) fn normalize(angle: Angle) -> Angle {
52 let deg = angle.to_degrees();
53 let result = ((deg % 360.0) + 360.0) % 360.0;
54 Angle::from_degrees(if result > 180.0 { result - 360.0 } else { result })
55}
56
57pub(crate) fn delta(from_angle: Angle, to_angle: Angle) -> Angle {
73 let norm_from_angle = normalize_rad(from_angle.to_radians());
74 let norm_to_angle = normalize_rad(to_angle.to_radians());
75 let provisional = norm_to_angle - norm_from_angle;
76
77 if provisional > -PI && provisional <= PI {
78 return Angle::from_radians(provisional);
79 }
80 if provisional > PI {
81 return Angle::from_radians(provisional - 2.0 * PI);
82 }
83 if provisional < -PI {
84 return Angle::from_radians(provisional + 2.0 * PI);
85 }
86 Angle::default()
87}
88
89pub(crate) fn normalize_rad(angle: f64) -> f64 {
90 let draft = angle % (2.0 * PI);
91 if draft < 0.0 {
92 draft + 2.0 * PI
93 } else {
94 draft
95 }
96}
97
98fn calculate_intersection_of_two_lines(line1: &[Coords2d; 2], line2_angle: f64, line2_point: Coords2d) -> Coords2d {
99 let line2_point_b = [
100 line2_point[0] + f64::cos(line2_angle.to_radians()) * 10.0,
101 line2_point[1] + f64::sin(line2_angle.to_radians()) * 10.0,
102 ];
103 intersect(line1[0], line1[1], line2_point, line2_point_b)
104}
105
106fn intersect(p1: Coords2d, p2: Coords2d, p3: Coords2d, p4: Coords2d) -> Coords2d {
107 let slope = |p1: Coords2d, p2: Coords2d| (p1[1] - p2[1]) / (p1[0] - p2[0]);
108 let constant = |p1: Coords2d, p2: Coords2d| p1[1] - slope(p1, p2) * p1[0];
109 let get_y = |for_x: f64, p1: Coords2d, p2: Coords2d| slope(p1, p2) * for_x + constant(p1, p2);
110
111 if p1[0] == p2[0] {
112 return [p1[0], get_y(p1[0], p3, p4)];
113 }
114 if p3[0] == p4[0] {
115 return [p3[0], get_y(p3[0], p1, p2)];
116 }
117
118 let x = (constant(p3, p4) - constant(p1, p2)) / (slope(p1, p2) - slope(p3, p4));
119 let y = get_y(x, p1, p2);
120 [x, y]
121}
122
123pub(crate) fn intersection_with_parallel_line(
124 line1: &[Coords2d; 2],
125 line1_offset: f64,
126 line2_angle: f64,
127 line2_point: Coords2d,
128) -> Coords2d {
129 calculate_intersection_of_two_lines(&offset_line(line1_offset, line1[0], line1[1]), line2_angle, line2_point)
130}
131
132fn offset_line(offset: f64, p1: Coords2d, p2: Coords2d) -> [Coords2d; 2] {
133 if p1[0] == p2[0] {
134 let direction = (p1[1] - p2[1]).signum();
135 return [[p1[0] + offset * direction, p1[1]], [p2[0] + offset * direction, p2[1]]];
136 }
137 if p1[1] == p2[1] {
138 let direction = (p2[0] - p1[0]).signum();
139 return [[p1[0], p1[1] + offset * direction], [p2[0], p2[1] + offset * direction]];
140 }
141 let x_offset = offset / f64::sin(f64::atan2(p1[1] - p2[1], p1[0] - p2[0]));
142 [[p1[0] + x_offset, p1[1]], [p2[0] + x_offset, p2[1]]]
143}
144
145pub(crate) fn get_y_component(angle: Angle, x: f64) -> Coords2d {
146 let normalised_angle = ((angle.to_degrees() % 360.0) + 360.0) % 360.0; let y = x * f64::tan(normalised_angle.to_radians());
148 let sign = if normalised_angle > 90.0 && normalised_angle <= 270.0 {
149 -1.0
150 } else {
151 1.0
152 };
153 [x * sign, y * sign]
154}
155
156pub(crate) fn get_x_component(angle: Angle, y: f64) -> Coords2d {
157 let normalised_angle = ((angle.to_degrees() % 360.0) + 360.0) % 360.0; let x = y / f64::tan(normalised_angle.to_radians());
159 let sign = if normalised_angle > 180.0 && normalised_angle <= 360.0 {
160 -1.0
161 } else {
162 1.0
163 };
164 [x * sign, y * sign]
165}
166
167pub(crate) fn arc_center_and_end(
168 from: Coords2d,
169 start_angle: Angle,
170 end_angle: Angle,
171 radius: f64,
172) -> (Coords2d, Coords2d) {
173 let start_angle = start_angle.to_radians();
174 let end_angle = end_angle.to_radians();
175
176 let center = [
177 -1.0 * (radius * start_angle.cos() - from[0]),
178 -1.0 * (radius * start_angle.sin() - from[1]),
179 ];
180
181 let end = [
182 center[0] + radius * end_angle.cos(),
183 center[1] + radius * end_angle.sin(),
184 ];
185
186 (center, end)
187}
188
189pub(crate) fn calculate_circle_center(p1: [f64; 2], p2: [f64; 2], p3: [f64; 2]) -> [f64; 2] {
192 let (x1, y1) = (p1[0], p1[1]);
193 let (x2, y2) = (p2[0], p2[1]);
194 let (x3, y3) = (p3[0], p3[1]);
195
196 let d = 2.0 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2));
200
201 if d.abs() < f64::EPSILON {
203 return [(x1 + x2 + x3) / 3.0, (y1 + y2 + y3) / 3.0];
204 }
205
206 let p1_sq = x1 * x1 + y1 * y1;
208 let p2_sq = x2 * x2 + y2 * y2;
209 let p3_sq = x3 * x3 + y3 * y3;
210
211 [
217 (p1_sq * (y2 - y3) + p2_sq * (y3 - y1) + p3_sq * (y1 - y2)) / d,
218 (p1_sq * (x3 - x2) + p2_sq * (x1 - x3) + p3_sq * (x2 - x1)) / d,
219 ]
220}
221
222pub struct CircleParams {
223 pub center: Coords2d,
224 pub radius: f64,
225}
226
227pub fn calculate_circle_from_3_points(points: [Coords2d; 3]) -> CircleParams {
228 let center = calculate_circle_center(points[0], points[1], points[2]);
229 CircleParams {
230 center,
231 radius: distance(center, points[1]),
232 }
233}
234
235#[cfg(test)]
236mod tests {
237 use std::f64::consts::TAU;
239
240 use approx::assert_relative_eq;
241 use pretty_assertions::assert_eq;
242
243 use super::{calculate_circle_center, get_x_component, get_y_component, Angle};
244
245 static EACH_QUAD: [(i32, [i32; 2]); 12] = [
246 (-315, [1, 1]),
247 (-225, [-1, 1]),
248 (-135, [-1, -1]),
249 (-45, [1, -1]),
250 (45, [1, 1]),
251 (135, [-1, 1]),
252 (225, [-1, -1]),
253 (315, [1, -1]),
254 (405, [1, 1]),
255 (495, [-1, 1]),
256 (585, [-1, -1]),
257 (675, [1, -1]),
258 ];
259
260 #[test]
261 fn test_get_y_component() {
262 let mut expected = Vec::new();
263 let mut results = Vec::new();
264
265 for &(angle, expected_result) in EACH_QUAD.iter() {
266 let res = get_y_component(Angle::from_degrees(angle as f64), 1.0);
267 results.push([res[0].round() as i32, res[1].round() as i32]);
268 expected.push(expected_result);
269 }
270
271 assert_eq!(results, expected);
272
273 let result = get_y_component(Angle::zero(), 1.0);
274 assert_eq!(result[0] as i32, 1);
275 assert_eq!(result[1] as i32, 0);
276
277 let result = get_y_component(Angle::from_degrees(90.0), 1.0);
278 assert_eq!(result[0] as i32, 1);
279 assert!(result[1] > 100000.0);
280
281 let result = get_y_component(Angle::from_degrees(180.0), 1.0);
282 assert_eq!(result[0] as i32, -1);
283 assert!((result[1] - 0.0).abs() < f64::EPSILON);
284
285 let result = get_y_component(Angle::from_degrees(270.0), 1.0);
286 assert_eq!(result[0] as i32, -1);
287 assert!(result[1] < -100000.0);
288 }
289
290 #[test]
291 fn test_get_x_component() {
292 let mut expected = Vec::new();
293 let mut results = Vec::new();
294
295 for &(angle, expected_result) in EACH_QUAD.iter() {
296 let res = get_x_component(Angle::from_degrees(angle as f64), 1.0);
297 results.push([res[0].round() as i32, res[1].round() as i32]);
298 expected.push(expected_result);
299 }
300
301 assert_eq!(results, expected);
302
303 let result = get_x_component(Angle::zero(), 1.0);
304 assert!(result[0] > 100000.0);
305 assert_eq!(result[1] as i32, 1);
306
307 let result = get_x_component(Angle::from_degrees(90.0), 1.0);
308 assert!((result[0] - 0.0).abs() < f64::EPSILON);
309 assert_eq!(result[1] as i32, 1);
310
311 let result = get_x_component(Angle::from_degrees(180.0), 1.0);
312 assert!(result[0] < -100000.0);
313 assert_eq!(result[1] as i32, 1);
314
315 let result = get_x_component(Angle::from_degrees(270.0), 1.0);
316 assert!((result[0] - 0.0).abs() < f64::EPSILON);
317 assert_eq!(result[1] as i32, -1);
318 }
319
320 #[test]
321 fn test_arc_center_and_end() {
322 let (center, end) = super::arc_center_and_end([0.0, 0.0], Angle::zero(), Angle::from_degrees(90.0), 1.0);
323 assert_eq!(center[0].round(), -1.0);
324 assert_eq!(center[1], 0.0);
325 assert_eq!(end[0].round(), -1.0);
326 assert_eq!(end[1], 1.0);
327
328 let (center, end) = super::arc_center_and_end([0.0, 0.0], Angle::zero(), Angle::from_degrees(180.0), 1.0);
329 assert_eq!(center[0].round(), -1.0);
330 assert_eq!(center[1], 0.0);
331 assert_eq!(end[0].round(), -2.0);
332 assert_eq!(end[1].round(), 0.0);
333
334 let (center, end) = super::arc_center_and_end([0.0, 0.0], Angle::zero(), Angle::from_degrees(180.0), 10.0);
335 assert_eq!(center[0].round(), -10.0);
336 assert_eq!(center[1], 0.0);
337 assert_eq!(end[0].round(), -20.0);
338 assert_eq!(end[1].round(), 0.0);
339 }
340
341 #[test]
342 fn test_calculate_circle_center() {
343 const EPS: f64 = 1e-4;
344
345 let p1 = [1.0, 2.0];
347 let p2 = [4.0, 5.0];
348 let p3 = [7.0, 3.0];
349 let center = calculate_circle_center(p1, p2, p3);
350 assert_relative_eq!(center[0], 4.1, epsilon = EPS);
351 assert_relative_eq!(center[1], 1.9, epsilon = EPS);
352
353 let center = [3.2, 0.7];
355 let radius_array = [0.001, 0.01, 0.6, 1.0, 5.0, 60.0, 500.0, 2000.0, 400_000.0];
356 let points_array = [[0.0, 0.33, 0.66], [0.0, 0.1, 0.2], [0.0, -0.1, 0.1], [0.0, 0.5, 0.7]];
357
358 let get_point = |radius: f64, t: f64| {
359 let angle = t * TAU;
360 [center[0] + radius * angle.cos(), center[1] + radius * angle.sin()]
361 };
362
363 for radius in radius_array {
364 for point in points_array {
365 let p1 = get_point(radius, point[0]);
366 let p2 = get_point(radius, point[1]);
367 let p3 = get_point(radius, point[2]);
368 let c = calculate_circle_center(p1, p2, p3);
369 assert_relative_eq!(c[0], center[0], epsilon = EPS);
370 assert_relative_eq!(c[1], center[1], epsilon = EPS);
371 }
372 }
373
374 let p1 = [0.0, 0.0];
376 let p2 = [1.0, 0.0];
377 let p3 = [0.5, 3.0_f64.sqrt() / 2.0];
378 let center = calculate_circle_center(p1, p2, p3);
379 assert_relative_eq!(center[0], 0.5, epsilon = EPS);
380 assert_relative_eq!(center[1], 1.0 / (2.0 * 3.0_f64.sqrt()), epsilon = EPS);
381
382 let p1 = [0.0, 0.0];
384 let p2 = [1.0, 0.0];
385 let p3 = [2.0, 0.0];
386 let center = calculate_circle_center(p1, p2, p3);
387 assert_relative_eq!(center[0], 1.0, epsilon = EPS);
388 assert_relative_eq!(center[1], 0.0, epsilon = EPS);
389
390 let p1 = [0.0, 0.0];
392 let p2 = [0.0, 2.0];
393 let p3 = [2.0, 0.0];
394 let center = calculate_circle_center(p1, p2, p3);
395 assert_relative_eq!(center[0], 1.0, epsilon = EPS);
396 assert_relative_eq!(center[1], 1.0, epsilon = EPS);
397
398 let p1 = [0.0, 0.0];
400 let p2 = [0.0, 6.0];
401 let p3 = [6.0, 0.0];
402 let center = calculate_circle_center(p1, p2, p3);
403 assert_relative_eq!(center[0], 3.0, epsilon = EPS);
404 assert_relative_eq!(center[1], 3.0, epsilon = EPS);
405 let radius = ((center[0] - p1[0]).powi(2) + (center[1] - p1[1]).powi(2)).sqrt();
407 assert_relative_eq!(radius, 3.0 * 2.0_f64.sqrt(), epsilon = EPS);
408 }
409}
410
411pub(crate) type Coords2d = [f64; 2];
412
413pub fn is_points_ccw_wasm(points: &[f64]) -> i32 {
414 let mut sum = 0.0;
417 for i in 0..(points.len() / 2) {
418 let point1 = [points[2 * i], points[2 * i + 1]];
419 let point2 = [points[(2 * i + 2) % points.len()], points[(2 * i + 3) % points.len()]];
420 sum += (point2[0] + point1[0]) * (point2[1] - point1[1]);
421 }
422 sum.signum() as i32
423}
424
425pub(crate) fn is_points_ccw(points: &[Coords2d]) -> i32 {
426 let flattened_points: Vec<f64> = points.iter().flat_map(|&p| vec![p[0], p[1]]).collect();
427 is_points_ccw_wasm(&flattened_points)
428}
429
430fn get_slope(start: Coords2d, end: Coords2d) -> (f64, f64) {
431 let slope = if start[0] - end[0] == 0.0 {
432 f64::INFINITY
433 } else {
434 (start[1] - end[1]) / (start[0] - end[0])
435 };
436
437 let perp_slope = if slope == f64::INFINITY { 0.0 } else { -1.0 / slope };
438
439 (slope, perp_slope)
440}
441
442fn get_angle(point1: Coords2d, point2: Coords2d) -> f64 {
443 let delta_x = point2[0] - point1[0];
444 let delta_y = point2[1] - point1[1];
445 let angle = delta_y.atan2(delta_x);
446
447 let result = if angle < 0.0 { angle + 2.0 * PI } else { angle };
448 result * (180.0 / PI)
449}
450
451fn delta_angle(from_angle: f64, to_angle: f64) -> f64 {
452 let norm_from_angle = normalize_rad(from_angle);
453 let norm_to_angle = normalize_rad(to_angle);
454 let provisional = norm_to_angle - norm_from_angle;
455
456 if provisional > -PI && provisional <= PI {
457 provisional
458 } else if provisional > PI {
459 provisional - 2.0 * PI
460 } else if provisional < -PI {
461 provisional + 2.0 * PI
462 } else {
463 provisional
464 }
465}
466
467fn deg2rad(deg: f64) -> f64 {
468 deg * (PI / 180.0)
469}
470
471fn get_mid_point(
472 center: Coords2d,
473 arc_start_point: Coords2d,
474 arc_end_point: Coords2d,
475 tan_previous_point: Coords2d,
476 radius: f64,
477 obtuse: bool,
478) -> Coords2d {
479 let angle_from_center_to_arc_start = get_angle(center, arc_start_point);
480 let angle_from_center_to_arc_end = get_angle(center, arc_end_point);
481 let delta_ang = delta_angle(
482 deg2rad(angle_from_center_to_arc_start),
483 deg2rad(angle_from_center_to_arc_end),
484 );
485 let delta_ang = delta_ang / 2.0 + deg2rad(angle_from_center_to_arc_start);
486 let shortest_arc_mid_point: Coords2d = [
487 delta_ang.cos() * radius + center[0],
488 delta_ang.sin() * radius + center[1],
489 ];
490 let opposite_delta = delta_ang + PI;
491 let longest_arc_mid_point: Coords2d = [
492 opposite_delta.cos() * radius + center[0],
493 opposite_delta.sin() * radius + center[1],
494 ];
495
496 let rotation_direction_original_points = is_points_ccw(&[tan_previous_point, arc_start_point, arc_end_point]);
497 let rotation_direction_points_on_arc = is_points_ccw(&[arc_start_point, shortest_arc_mid_point, arc_end_point]);
498 if rotation_direction_original_points != rotation_direction_points_on_arc && obtuse {
499 longest_arc_mid_point
500 } else {
501 shortest_arc_mid_point
502 }
503}
504
505fn intersect_point_n_slope(point1: Coords2d, slope1: f64, point2: Coords2d, slope2: f64) -> Coords2d {
506 let x = if slope1.abs() == f64::INFINITY {
507 point1[0]
508 } else if slope2.abs() == f64::INFINITY {
509 point2[0]
510 } else {
511 (point2[1] - slope2 * point2[0] - point1[1] + slope1 * point1[0]) / (slope1 - slope2)
512 };
513 let y = if slope1.abs() != f64::INFINITY {
514 slope1 * x - slope1 * point1[0] + point1[1]
515 } else {
516 slope2 * x - slope2 * point2[0] + point2[1]
517 };
518 [x, y]
519}
520
521pub struct TangentialArcInfoInput {
523 pub arc_start_point: Coords2d,
525 pub arc_end_point: Coords2d,
527 pub tan_previous_point: Coords2d,
529 pub obtuse: bool,
531}
532
533pub struct TangentialArcInfoOutput {
535 pub center: Coords2d,
537 pub arc_mid_point: Coords2d,
539 pub radius: f64,
541 pub start_angle: f64,
543 pub end_angle: f64,
545 pub ccw: i32,
547 pub arc_length: f64,
549}
550
551pub fn get_tangential_arc_to_info(input: TangentialArcInfoInput) -> TangentialArcInfoOutput {
555 let (_, perp_slope) = get_slope(input.tan_previous_point, input.arc_start_point);
556 let tangential_line_perp_slope = perp_slope;
557
558 let mid_point: Coords2d = [
560 (input.arc_start_point[0] + input.arc_end_point[0]) / 2.0,
561 (input.arc_start_point[1] + input.arc_end_point[1]) / 2.0,
562 ];
563
564 let slope_mid_point_line = get_slope(input.arc_start_point, mid_point);
565
566 let center: Coords2d;
567 let radius: f64;
568
569 if tangential_line_perp_slope == slope_mid_point_line.0 {
570 center = mid_point;
573 radius =
574 ((input.arc_start_point[0] - center[0]).powi(2) + (input.arc_start_point[1] - center[1]).powi(2)).sqrt();
575 } else {
576 center = intersect_point_n_slope(
577 mid_point,
578 slope_mid_point_line.1,
579 input.arc_start_point,
580 tangential_line_perp_slope,
581 );
582 radius =
583 ((input.arc_start_point[0] - center[0]).powi(2) + (input.arc_start_point[1] - center[1]).powi(2)).sqrt();
584 }
585
586 let arc_mid_point = get_mid_point(
587 center,
588 input.arc_start_point,
589 input.arc_end_point,
590 input.tan_previous_point,
591 radius,
592 input.obtuse,
593 );
594
595 let start_angle = (input.arc_start_point[1] - center[1]).atan2(input.arc_start_point[0] - center[0]);
596 let end_angle = (input.arc_end_point[1] - center[1]).atan2(input.arc_end_point[0] - center[0]);
597 let ccw = is_points_ccw(&[input.arc_start_point, arc_mid_point, input.arc_end_point]);
598
599 let arc_mid_angle = (arc_mid_point[1] - center[1]).atan2(arc_mid_point[0] - center[0]);
600 let start_to_mid_arc_length = radius
601 * delta(Angle::from_radians(start_angle), Angle::from_radians(arc_mid_angle))
602 .to_radians()
603 .abs();
604 let mid_to_end_arc_length = radius
605 * delta(Angle::from_radians(arc_mid_angle), Angle::from_radians(end_angle))
606 .to_radians()
607 .abs();
608 let arc_length = start_to_mid_arc_length + mid_to_end_arc_length;
609
610 TangentialArcInfoOutput {
611 center,
612 radius,
613 arc_mid_point,
614 start_angle,
615 end_angle,
616 ccw,
617 arc_length,
618 }
619}
620
621#[cfg(test)]
622mod get_tangential_arc_to_info_tests {
623 use approx::assert_relative_eq;
624
625 use super::*;
626
627 fn round_to_three_decimals(num: f64) -> f64 {
628 (num * 1000.0).round() / 1000.0
629 }
630
631 #[test]
632 fn test_basic_case() {
633 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
634 tan_previous_point: [0.0, -5.0],
635 arc_start_point: [0.0, 0.0],
636 arc_end_point: [4.0, 0.0],
637 obtuse: true,
638 });
639 assert_relative_eq!(result.center[0], 2.0);
640 assert_relative_eq!(result.center[1], 0.0);
641 assert_relative_eq!(result.arc_mid_point[0], 2.0);
642 assert_relative_eq!(result.arc_mid_point[1], 2.0);
643 assert_relative_eq!(result.radius, 2.0);
644 assert_relative_eq!(result.start_angle, PI);
645 assert_relative_eq!(result.end_angle, 0.0);
646 assert_eq!(result.ccw, -1);
647 }
648
649 #[test]
650 fn basic_case_with_arc_centered_at_0_0_and_the_tangential_line_being_45_degrees() {
651 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
652 tan_previous_point: [0.0, -4.0],
653 arc_start_point: [2.0, -2.0],
654 arc_end_point: [-2.0, 2.0],
655 obtuse: true,
656 });
657 assert_relative_eq!(result.center[0], 0.0);
658 assert_relative_eq!(result.center[1], 0.0);
659 assert_relative_eq!(round_to_three_decimals(result.arc_mid_point[0]), 2.0);
660 assert_relative_eq!(round_to_three_decimals(result.arc_mid_point[1]), 2.0);
661 assert_relative_eq!(result.radius, (2.0f64 * 2.0 + 2.0 * 2.0).sqrt());
662 assert_relative_eq!(result.start_angle, -PI / 4.0);
663 assert_relative_eq!(result.end_angle, 3.0 * PI / 4.0);
664 assert_eq!(result.ccw, 1);
665 }
666
667 #[test]
668 fn test_get_tangential_arc_to_info_moving_arc_end_point() {
669 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
670 tan_previous_point: [0.0, -4.0],
671 arc_start_point: [2.0, -2.0],
672 arc_end_point: [2.0, 2.0],
673 obtuse: true,
674 });
675 let expected_radius = (2.0f64 * 2.0 + 2.0 * 2.0).sqrt();
676 assert_relative_eq!(round_to_three_decimals(result.center[0]), 0.0);
677 assert_relative_eq!(result.center[1], 0.0);
678 assert_relative_eq!(result.arc_mid_point[0], expected_radius);
679 assert_relative_eq!(round_to_three_decimals(result.arc_mid_point[1]), -0.0);
680 assert_relative_eq!(result.radius, expected_radius);
681 assert_relative_eq!(result.start_angle, -PI / 4.0);
682 assert_relative_eq!(result.end_angle, PI / 4.0);
683 assert_eq!(result.ccw, 1);
684 }
685
686 #[test]
687 fn test_get_tangential_arc_to_info_moving_arc_end_point_again() {
688 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
689 tan_previous_point: [0.0, -4.0],
690 arc_start_point: [2.0, -2.0],
691 arc_end_point: [-2.0, -2.0],
692 obtuse: true,
693 });
694 let expected_radius = (2.0f64 * 2.0 + 2.0 * 2.0).sqrt();
695 assert_relative_eq!(result.center[0], 0.0);
696 assert_relative_eq!(result.center[1], 0.0);
697 assert_relative_eq!(result.radius, expected_radius);
698 assert_relative_eq!(round_to_three_decimals(result.arc_mid_point[0]), 0.0);
699 assert_relative_eq!(result.arc_mid_point[1], expected_radius);
700 assert_relative_eq!(result.start_angle, -PI / 4.0);
701 assert_relative_eq!(result.end_angle, -3.0 * PI / 4.0);
702 assert_eq!(result.ccw, 1);
703 }
704
705 #[test]
706 fn test_get_tangential_arc_to_info_acute_moving_arc_end_point() {
707 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
708 tan_previous_point: [0.0, -4.0],
709 arc_start_point: [2.0, -2.0],
710 arc_end_point: [-2.0, -2.0],
711 obtuse: false,
712 });
713 let expected_radius = (2.0f64 * 2.0 + 2.0 * 2.0).sqrt();
714 assert_relative_eq!(result.center[0], 0.0);
715 assert_relative_eq!(result.center[1], 0.0);
716 assert_relative_eq!(result.radius, expected_radius);
717 assert_relative_eq!(round_to_three_decimals(result.arc_mid_point[0]), -0.0);
718 assert_relative_eq!(result.arc_mid_point[1], -expected_radius);
719 assert_relative_eq!(result.start_angle, -PI / 4.0);
720 assert_relative_eq!(result.end_angle, -3.0 * PI / 4.0);
721 assert_eq!(result.ccw, -1);
723 }
724
725 #[test]
726 fn test_get_tangential_arc_to_info_obtuse_with_wrap_around() {
727 let arc_end = (std::f64::consts::PI / 4.0).cos() * 2.0;
728 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
729 tan_previous_point: [2.0, -4.0],
730 arc_start_point: [2.0, 0.0],
731 arc_end_point: [0.0, -2.0],
732 obtuse: true,
733 });
734 assert_relative_eq!(result.center[0], -0.0);
735 assert_relative_eq!(result.center[1], 0.0);
736 assert_relative_eq!(result.radius, 2.0);
737 assert_relative_eq!(result.arc_mid_point[0], -arc_end);
738 assert_relative_eq!(result.arc_mid_point[1], arc_end);
739 assert_relative_eq!(result.start_angle, 0.0);
740 assert_relative_eq!(result.end_angle, -PI / 2.0);
741 assert_eq!(result.ccw, 1);
742 }
743
744 #[test]
745 fn test_arc_length_obtuse_cw() {
746 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
747 tan_previous_point: [-1.0, -1.0],
748 arc_start_point: [-1.0, 0.0],
749 arc_end_point: [0.0, -1.0],
750 obtuse: true,
751 });
752 let circumference = 2.0 * PI * result.radius;
753 let expected_length = circumference * 3.0 / 4.0; assert_relative_eq!(result.arc_length, expected_length);
755 }
756
757 #[test]
758 fn test_arc_length_acute_cw() {
759 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
760 tan_previous_point: [-1.0, -1.0],
761 arc_start_point: [-1.0, 0.0],
762 arc_end_point: [0.0, 1.0],
763 obtuse: true,
764 });
765 let circumference = 2.0 * PI * result.radius;
766 let expected_length = circumference / 4.0; assert_relative_eq!(result.arc_length, expected_length);
768 }
769
770 #[test]
771 fn test_arc_length_obtuse_ccw() {
772 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
773 tan_previous_point: [1.0, -1.0],
774 arc_start_point: [1.0, 0.0],
775 arc_end_point: [0.0, -1.0],
776 obtuse: true,
777 });
778 let circumference = 2.0 * PI * result.radius;
779 let expected_length = circumference * 3.0 / 4.0; assert_relative_eq!(result.arc_length, expected_length);
781 }
782
783 #[test]
784 fn test_arc_length_acute_ccw() {
785 let result = get_tangential_arc_to_info(TangentialArcInfoInput {
786 tan_previous_point: [1.0, -1.0],
787 arc_start_point: [1.0, 0.0],
788 arc_end_point: [0.0, 1.0],
789 obtuse: true,
790 });
791 let circumference = 2.0 * PI * result.radius;
792 let expected_length = circumference / 4.0; assert_relative_eq!(result.arc_length, expected_length);
794 }
795}
796
797pub(crate) fn get_tangent_point_from_previous_arc(
798 last_arc_center: Coords2d,
799 last_arc_ccw: bool,
800 last_arc_end: Coords2d,
801) -> Coords2d {
802 let angle_from_old_center_to_arc_start = get_angle(last_arc_center, last_arc_end);
803 let tangential_angle = angle_from_old_center_to_arc_start + if last_arc_ccw { -90.0 } else { 90.0 };
804 [
806 tangential_angle.to_radians().cos() * 10.0 + last_arc_end[0],
807 tangential_angle.to_radians().sin() * 10.0 + last_arc_end[1],
808 ]
809}