kcl_lib/std/csg.rs
1//! Constructive Solid Geometry (CSG) operations.
2
3use anyhow::Result;
4use kcl_derive_docs::stdlib;
5use kcmc::{each_cmd as mcmd, length_unit::LengthUnit, ModelingCmd};
6use kittycad_modeling_cmds::{
7 self as kcmc,
8 ok_response::OkModelingCmdResponse,
9 output::{BooleanIntersection, BooleanSubtract, BooleanUnion},
10 websocket::OkWebSocketResponseData,
11};
12
13use super::{args::TyF64, DEFAULT_TOLERANCE};
14use crate::{
15 errors::{KclError, KclErrorDetails},
16 execution::{types::RuntimeType, ExecState, KclValue, Solid},
17 std::{patterns::GeometryTrait, Args},
18};
19
20/// Union two or more solids into a single solid.
21pub async fn union(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
22 let solids: Vec<Solid> =
23 args.get_unlabeled_kw_arg_typed("solids", &RuntimeType::Union(vec![RuntimeType::solids()]), exec_state)?;
24 let tolerance: Option<TyF64> = args.get_kw_arg_opt_typed("tolerance", &RuntimeType::length(), exec_state)?;
25
26 if solids.len() < 2 {
27 return Err(KclError::UndefinedValue(KclErrorDetails::new(
28 "At least two solids are required for a union operation.".to_string(),
29 vec![args.source_range],
30 )));
31 }
32
33 let solids = inner_union(solids, tolerance, exec_state, args).await?;
34 Ok(solids.into())
35}
36
37/// Union two or more solids into a single solid.
38///
39/// ```no_run
40/// // Union two cubes using the stdlib functions.
41///
42/// fn cube(center, size) {
43/// return startSketchOn(XY)
44/// |> startProfile(at = [center[0] - size, center[1] - size])
45/// |> line(endAbsolute = [center[0] + size, center[1] - size])
46/// |> line(endAbsolute = [center[0] + size, center[1] + size])
47/// |> line(endAbsolute = [center[0] - size, center[1] + size])
48/// |> close()
49/// |> extrude(length = 10)
50/// }
51///
52/// part001 = cube(center = [0, 0], size = 10)
53/// part002 = cube(center = [7, 3], size = 5)
54/// |> translate(z = 1)
55///
56/// unionedPart = union([part001, part002])
57/// ```
58///
59/// ```no_run
60/// // Union two cubes using operators.
61/// // NOTE: This will not work when using codemods through the UI.
62/// // Codemods will generate the stdlib function call instead.
63///
64/// fn cube(center, size) {
65/// return startSketchOn(XY)
66/// |> startProfile(at = [center[0] - size, center[1] - size])
67/// |> line(endAbsolute = [center[0] + size, center[1] - size])
68/// |> line(endAbsolute = [center[0] + size, center[1] + size])
69/// |> line(endAbsolute = [center[0] - size, center[1] + size])
70/// |> close()
71/// |> extrude(length = 10)
72/// }
73///
74/// part001 = cube(center = [0, 0], size = 10)
75/// part002 = cube(center = [7, 3], size = 5)
76/// |> translate(z = 1)
77///
78/// // This is the equivalent of: union([part001, part002])
79/// unionedPart = part001 + part002
80/// ```
81///
82/// ```no_run
83/// // Union two cubes using the more programmer-friendly operator.
84/// // NOTE: This will not work when using codemods through the UI.
85/// // Codemods will generate the stdlib function call instead.
86///
87/// fn cube(center, size) {
88/// return startSketchOn(XY)
89/// |> startProfile(at = [center[0] - size, center[1] - size])
90/// |> line(endAbsolute = [center[0] + size, center[1] - size])
91/// |> line(endAbsolute = [center[0] + size, center[1] + size])
92/// |> line(endAbsolute = [center[0] - size, center[1] + size])
93/// |> close()
94/// |> extrude(length = 10)
95/// }
96///
97/// part001 = cube(center = [0, 0], size = 10)
98/// part002 = cube(center = [7, 3], size = 5)
99/// |> translate(z = 1)
100///
101/// // This is the equivalent of: union([part001, part002])
102/// // Programmers will understand `|` as a union operation, but mechanical engineers
103/// // will understand `+`, we made both work.
104/// unionedPart = part001 | part002
105/// ```
106#[stdlib {
107 name = "union",
108 feature_tree_operation = true,
109 unlabeled_first = true,
110 args = {
111 solids = {docs = "The solids to union."},
112 tolerance = {docs = "The tolerance to use for the union operation."},
113 },
114 tags = ["solid"]
115}]
116pub(crate) async fn inner_union(
117 solids: Vec<Solid>,
118 tolerance: Option<TyF64>,
119 exec_state: &mut ExecState,
120 args: Args,
121) -> Result<Vec<Solid>, KclError> {
122 let solid_out_id = exec_state.next_uuid();
123
124 let mut solid = solids[0].clone();
125 solid.set_id(solid_out_id);
126 let mut new_solids = vec![solid.clone()];
127
128 if args.ctx.no_engine_commands().await {
129 return Ok(new_solids);
130 }
131
132 // Flush the fillets for the solids.
133 args.flush_batch_for_solids(exec_state, &solids).await?;
134
135 let result = args
136 .send_modeling_cmd(
137 solid_out_id,
138 ModelingCmd::from(mcmd::BooleanUnion {
139 solid_ids: solids.iter().map(|s| s.id).collect(),
140 tolerance: LengthUnit(tolerance.map(|t| t.n).unwrap_or(DEFAULT_TOLERANCE)),
141 }),
142 )
143 .await?;
144
145 let OkWebSocketResponseData::Modeling {
146 modeling_response: OkModelingCmdResponse::BooleanUnion(BooleanUnion { extra_solid_ids }),
147 } = result
148 else {
149 return Err(KclError::Internal(KclErrorDetails::new(
150 "Failed to get the result of the union operation.".to_string(),
151 vec![args.source_range],
152 )));
153 };
154
155 // If we have more solids, set those as well.
156 if !extra_solid_ids.is_empty() {
157 solid.set_id(extra_solid_ids[0]);
158 new_solids.push(solid.clone());
159 }
160
161 Ok(new_solids)
162}
163
164/// Intersect returns the shared volume between multiple solids, preserving only
165/// overlapping regions.
166pub async fn intersect(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
167 let solids: Vec<Solid> = args.get_unlabeled_kw_arg_typed("solids", &RuntimeType::solids(), exec_state)?;
168 let tolerance: Option<TyF64> = args.get_kw_arg_opt_typed("tolerance", &RuntimeType::length(), exec_state)?;
169
170 if solids.len() < 2 {
171 return Err(KclError::UndefinedValue(KclErrorDetails::new(
172 "At least two solids are required for an intersect operation.".to_string(),
173 vec![args.source_range],
174 )));
175 }
176
177 let solids = inner_intersect(solids, tolerance, exec_state, args).await?;
178 Ok(solids.into())
179}
180
181/// Intersect returns the shared volume between multiple solids, preserving only
182/// overlapping regions.
183///
184/// Intersect computes the geometric intersection of multiple solid bodies,
185/// returning a new solid representing the volume that is common to all input
186/// solids. This operation is useful for determining shared material regions,
187/// verifying fit, and analyzing overlapping geometries in assemblies.
188///
189/// ```no_run
190/// // Intersect two cubes using the stdlib functions.
191///
192/// fn cube(center, size) {
193/// return startSketchOn(XY)
194/// |> startProfile(at = [center[0] - size, center[1] - size])
195/// |> line(endAbsolute = [center[0] + size, center[1] - size])
196/// |> line(endAbsolute = [center[0] + size, center[1] + size])
197/// |> line(endAbsolute = [center[0] - size, center[1] + size])
198/// |> close()
199/// |> extrude(length = 10)
200/// }
201///
202/// part001 = cube(center = [0, 0], size = 10)
203/// part002 = cube(center = [7, 3], size = 5)
204/// |> translate(z = 1)
205///
206/// intersectedPart = intersect([part001, part002])
207/// ```
208///
209/// ```no_run
210/// // Intersect two cubes using operators.
211/// // NOTE: This will not work when using codemods through the UI.
212/// // Codemods will generate the stdlib function call instead.
213///
214/// fn cube(center, size) {
215/// return startSketchOn(XY)
216/// |> startProfile(at = [center[0] - size, center[1] - size])
217/// |> line(endAbsolute = [center[0] + size, center[1] - size])
218/// |> line(endAbsolute = [center[0] + size, center[1] + size])
219/// |> line(endAbsolute = [center[0] - size, center[1] + size])
220/// |> close()
221/// |> extrude(length = 10)
222/// }
223///
224/// part001 = cube(center = [0, 0], size = 10)
225/// part002 = cube(center = [7, 3], size = 5)
226/// |> translate(z = 1)
227///
228/// // This is the equivalent of: intersect([part001, part002])
229/// intersectedPart = part001 & part002
230/// ```
231#[stdlib {
232 name = "intersect",
233 feature_tree_operation = true,
234 unlabeled_first = true,
235 args = {
236 solids = {docs = "The solids to intersect."},
237 tolerance = {docs = "The tolerance to use for the intersection operation."},
238 },
239 tags = ["solid"]
240}]
241pub(crate) async fn inner_intersect(
242 solids: Vec<Solid>,
243 tolerance: Option<TyF64>,
244 exec_state: &mut ExecState,
245 args: Args,
246) -> Result<Vec<Solid>, KclError> {
247 let solid_out_id = exec_state.next_uuid();
248
249 let mut solid = solids[0].clone();
250 solid.set_id(solid_out_id);
251 let mut new_solids = vec![solid.clone()];
252
253 if args.ctx.no_engine_commands().await {
254 return Ok(new_solids);
255 }
256
257 // Flush the fillets for the solids.
258 args.flush_batch_for_solids(exec_state, &solids).await?;
259
260 let result = args
261 .send_modeling_cmd(
262 solid_out_id,
263 ModelingCmd::from(mcmd::BooleanIntersection {
264 solid_ids: solids.iter().map(|s| s.id).collect(),
265 tolerance: LengthUnit(tolerance.map(|t| t.n).unwrap_or(DEFAULT_TOLERANCE)),
266 }),
267 )
268 .await?;
269
270 let OkWebSocketResponseData::Modeling {
271 modeling_response: OkModelingCmdResponse::BooleanIntersection(BooleanIntersection { extra_solid_ids }),
272 } = result
273 else {
274 return Err(KclError::Internal(KclErrorDetails::new(
275 "Failed to get the result of the intersection operation.".to_string(),
276 vec![args.source_range],
277 )));
278 };
279
280 // If we have more solids, set those as well.
281 if !extra_solid_ids.is_empty() {
282 solid.set_id(extra_solid_ids[0]);
283 new_solids.push(solid.clone());
284 }
285
286 Ok(new_solids)
287}
288
289/// Subtract removes tool solids from base solids, leaving the remaining material.
290pub async fn subtract(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
291 let solids: Vec<Solid> = args.get_unlabeled_kw_arg_typed("solids", &RuntimeType::solids(), exec_state)?;
292 let tools: Vec<Solid> = args.get_kw_arg_typed("tools", &RuntimeType::solids(), exec_state)?;
293
294 let tolerance: Option<TyF64> = args.get_kw_arg_opt_typed("tolerance", &RuntimeType::length(), exec_state)?;
295
296 let solids = inner_subtract(solids, tools, tolerance, exec_state, args).await?;
297 Ok(solids.into())
298}
299
300/// Subtract removes tool solids from base solids, leaving the remaining material.
301///
302/// Performs a boolean subtraction operation, removing the volume of one or more
303/// tool solids from one or more base solids. The result is a new solid
304/// representing the material that remains after all tool solids have been cut
305/// away. This function is essential for machining simulations, cavity creation,
306/// and complex multi-body part modeling.
307///
308/// ```no_run
309/// // Subtract a cylinder from a cube using the stdlib functions.
310///
311/// fn cube(center, size) {
312/// return startSketchOn(XY)
313/// |> startProfile(at = [center[0] - size, center[1] - size])
314/// |> line(endAbsolute = [center[0] + size, center[1] - size])
315/// |> line(endAbsolute = [center[0] + size, center[1] + size])
316/// |> line(endAbsolute = [center[0] - size, center[1] + size])
317/// |> close()
318/// |> extrude(length = 10)
319/// }
320///
321/// part001 = cube(center = [0, 0], size = 10)
322/// part002 = cube(center = [7, 3], size = 5)
323/// |> translate(z = 1)
324///
325/// subtractedPart = subtract([part001], tools=[part002])
326/// ```
327///
328/// ```no_run
329/// // Subtract a cylinder from a cube using operators.
330/// // NOTE: This will not work when using codemods through the UI.
331/// // Codemods will generate the stdlib function call instead.
332///
333/// fn cube(center, size) {
334/// return startSketchOn(XY)
335/// |> startProfile(at = [center[0] - size, center[1] - size])
336/// |> line(endAbsolute = [center[0] + size, center[1] - size])
337/// |> line(endAbsolute = [center[0] + size, center[1] + size])
338/// |> line(endAbsolute = [center[0] - size, center[1] + size])
339/// |> close()
340/// |> extrude(length = 10)
341/// }
342///
343/// part001 = cube(center = [0, 0], size = 10)
344/// part002 = cube(center = [7, 3], size = 5)
345/// |> translate(z = 1)
346///
347/// // This is the equivalent of: subtract([part001], tools=[part002])
348/// subtractedPart = part001 - part002
349/// ```
350#[stdlib {
351 name = "subtract",
352 feature_tree_operation = true,
353 unlabeled_first = true,
354 args = {
355 solids = {docs = "The solids to use as the base to subtract from."},
356 tools = {docs = "The solids to subtract."},
357 tolerance = {docs = "The tolerance to use for the subtraction operation."},
358 },
359 tags = ["solid"]
360}]
361pub(crate) async fn inner_subtract(
362 solids: Vec<Solid>,
363 tools: Vec<Solid>,
364 tolerance: Option<TyF64>,
365 exec_state: &mut ExecState,
366 args: Args,
367) -> Result<Vec<Solid>, KclError> {
368 let solid_out_id = exec_state.next_uuid();
369
370 let mut solid = solids[0].clone();
371 solid.set_id(solid_out_id);
372 let mut new_solids = vec![solid.clone()];
373
374 if args.ctx.no_engine_commands().await {
375 return Ok(new_solids);
376 }
377
378 // Flush the fillets for the solids and the tools.
379 let combined_solids = solids.iter().chain(tools.iter()).cloned().collect::<Vec<Solid>>();
380 args.flush_batch_for_solids(exec_state, &combined_solids).await?;
381
382 let result = args
383 .send_modeling_cmd(
384 solid_out_id,
385 ModelingCmd::from(mcmd::BooleanSubtract {
386 target_ids: solids.iter().map(|s| s.id).collect(),
387 tool_ids: tools.iter().map(|s| s.id).collect(),
388 tolerance: LengthUnit(tolerance.map(|t| t.n).unwrap_or(DEFAULT_TOLERANCE)),
389 }),
390 )
391 .await?;
392
393 let OkWebSocketResponseData::Modeling {
394 modeling_response: OkModelingCmdResponse::BooleanSubtract(BooleanSubtract { extra_solid_ids }),
395 } = result
396 else {
397 return Err(KclError::Internal(KclErrorDetails::new(
398 "Failed to get the result of the subtract operation.".to_string(),
399 vec![args.source_range],
400 )));
401 };
402
403 // If we have more solids, set those as well.
404 if !extra_solid_ids.is_empty() {
405 solid.set_id(extra_solid_ids[0]);
406 new_solids.push(solid.clone());
407 }
408
409 Ok(new_solids)
410}