kcl_lib/walk/ast_visitor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
use anyhow::Result;
use crate::walk::Node;
/// Walk-specific trait adding the ability to traverse the KCL AST.
///
/// This trait is implemented on [Node] to handle the fairly tricky bit of
/// recursing into the AST in a single place, as well as helpers for traversing
/// the tree. for callers to use.
pub trait Visitable<'tree> {
/// Return a `Vec<Node>` for all *direct* children of this AST node. This
/// should only contain direct descendants.
fn children(&self) -> Vec<Node<'tree>>;
/// Return `self` as a [Node]. Generally speaking, the [Visitable] trait
/// is only going to be implemented on [Node], so this is purely used by
/// helpers that are generic over a [Visitable] and want to deref back
/// into a [Node].
fn node(&self) -> Node<'tree>;
/// Call the provided [Visitor] in order to Visit `self`. This will
/// only be called on `self` -- the [Visitor] is responsible for
/// recursing into any children, if desired.
fn visit<VisitorT>(&self, visitor: VisitorT) -> Result<bool, VisitorT::Error>
where
VisitorT: Visitor<'tree>,
{
visitor.visit_node(self.node())
}
}
/// Trait used to enable visiting members of KCL AST.
///
/// Implementing this trait enables the implementer to be invoked over
/// members of KCL AST by using the [Visitable::visit] function on
/// a [Node].
pub trait Visitor<'tree> {
/// Error type returned by the [Self::visit] function.
type Error;
/// Visit a KCL AST [Node].
///
/// In general, implementers likely wish to check to see if a Node is what
/// they're looking for, and either descend into that [Node]'s children (by
/// calling [Visitable::children] on [Node] to get children nodes,
/// calling [Visitable::visit] on each node of interest), or perform
/// some action.
fn visit_node(&self, node: Node<'tree>) -> Result<bool, Self::Error>;
}
impl<'a, FnT, ErrorT> Visitor<'a> for FnT
where
FnT: Fn(Node<'a>) -> Result<bool, ErrorT>,
{
type Error = ErrorT;
fn visit_node(&self, n: Node<'a>) -> Result<bool, ErrorT> {
self(n)
}
}
impl<'tree> Visitable<'tree> for Node<'tree> {
fn node(&self) -> Node<'tree> {
*self
}
fn children(&self) -> Vec<Node<'tree>> {
match self {
Node::Program(n) => n.body.iter().map(|node| node.into()).collect(),
Node::ExpressionStatement(n) => {
vec![(&n.expression).into()]
}
Node::BinaryExpression(n) => {
vec![(&n.left).into(), (&n.right).into()]
}
Node::FunctionExpression(n) => {
let mut children = n.params.iter().map(|v| v.into()).collect::<Vec<Node>>();
children.push((&n.body).into());
children
}
Node::CallExpression(n) => {
let mut children = n.arguments.iter().map(|v| v.into()).collect::<Vec<Node>>();
children.insert(0, (&n.callee).into());
children
}
Node::CallExpressionKw(n) => {
let mut children = n.unlabeled.iter().map(|v| v.into()).collect::<Vec<Node>>();
// TODO: this is wrong but it's what the old walk code was doing.
// We likely need a real LabeledArg AST node, but I don't
// want to tango with it since it's a lot deeper than
// adding it to the enum.
children.extend(n.arguments.iter().map(|v| (&v.arg).into()).collect::<Vec<Node>>());
children
}
Node::PipeExpression(n) => n.body.iter().map(|v| v.into()).collect(),
Node::ArrayExpression(n) => n.elements.iter().map(|v| v.into()).collect(),
Node::ArrayRangeExpression(n) => {
vec![(&n.start_element).into(), (&n.end_element).into()]
}
Node::ObjectExpression(n) => n.properties.iter().map(|v| v.into()).collect(),
Node::MemberExpression(n) => {
vec![(&n.object).into(), (&n.property).into()]
}
Node::IfExpression(n) => {
let mut children = n.else_ifs.iter().map(|v| v.into()).collect::<Vec<Node>>();
children.insert(0, n.cond.as_ref().into());
children.push(n.final_else.as_ref().into());
children
}
Node::VariableDeclaration(n) => vec![(&n.declaration).into()],
Node::ReturnStatement(n) => {
vec![(&n.argument).into()]
}
Node::VariableDeclarator(n) => {
vec![(&n.id).into(), (&n.init).into()]
}
Node::UnaryExpression(n) => {
vec![(&n.argument).into()]
}
Node::Parameter(n) => {
vec![(&n.identifier).into()]
}
Node::ObjectProperty(n) => {
vec![(&n.value).into()]
}
Node::ElseIf(n) => {
vec![(&n.cond).into(), n.then_val.as_ref().into()]
}
Node::LabelledExpression(e) => {
vec![(&e.expr).into(), (&e.label).into()]
}
Node::PipeSubstitution(_)
| Node::TagDeclarator(_)
| Node::Identifier(_)
| Node::ImportStatement(_)
| Node::KclNone(_)
| Node::Literal(_) => vec![],
}
}
}
#[cfg(test)]
mod tests {
use std::sync::Mutex;
use super::*;
macro_rules! kcl {
( $kcl:expr ) => {{
$crate::parsing::top_level_parse($kcl).unwrap()
}};
}
#[test]
fn count_crows() {
let program = kcl!(
"\
const crow1 = 1
const crow2 = 2
fn crow3() {
const crow4 = 3
crow5()
}
"
);
#[derive(Debug, Default)]
struct CountCrows {
n: Box<Mutex<usize>>,
}
impl<'tree> Visitor<'tree> for &CountCrows {
type Error = ();
fn visit_node(&self, node: Node<'tree>) -> Result<bool, Self::Error> {
if let Node::VariableDeclarator(vd) = node {
if vd.id.name.starts_with("crow") {
*self.n.lock().unwrap() += 1;
}
}
for child in node.children().iter() {
if !child.visit(*self)? {
return Ok(false);
}
}
Ok(true)
}
}
let prog: Node = (&program).into();
let count_crows: CountCrows = Default::default();
Visitable::visit(&prog, &count_crows).unwrap();
assert_eq!(*count_crows.n.lock().unwrap(), 4);
}
}