kcl_lib/std/loft.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
//! Standard library lofts.
use std::num::NonZeroU32;
use anyhow::Result;
use derive_docs::stdlib;
use kcmc::{each_cmd as mcmd, length_unit::LengthUnit, ModelingCmd};
use kittycad_modeling_cmds as kcmc;
use crate::{
errors::{KclError, KclErrorDetails},
execution::{ExecState, KclValue, Sketch, Solid},
std::{extrude::do_post_extrude, fillet::default_tolerance, Args},
};
const DEFAULT_V_DEGREE: u32 = 2;
/// Create a 3D surface or solid by interpolating between two or more sketches.
pub async fn loft(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let sketches = args.get_unlabeled_kw_arg("sketches")?;
let v_degree: NonZeroU32 = args
.get_kw_arg_opt("vDegree")
.unwrap_or(NonZeroU32::new(DEFAULT_V_DEGREE).unwrap());
// Attempt to approximate rational curves (such as arcs) using a bezier.
// This will remove banding around interpolations between arcs and non-arcs. It may produce errors in other scenarios
// Over time, this field won't be necessary.
let bez_approximate_rational = args.get_kw_arg_opt("bezApproximateRational").unwrap_or(false);
// This can be set to override the automatically determined topological base curve, which is usually the first section encountered.
let base_curve_index: Option<u32> = args.get_kw_arg_opt("baseCurveIndex");
// Tolerance for the loft operation.
let tolerance: Option<f64> = args.get_kw_arg_opt("tolerance");
let value = inner_loft(
sketches,
v_degree,
bez_approximate_rational,
base_curve_index,
tolerance,
exec_state,
args,
)
.await?;
Ok(KclValue::Solid { value })
}
/// Create a 3D surface or solid by interpolating between two or more sketches.
///
/// The sketches need to closed and on the same plane.
///
/// ```no_run
/// // Loft a square and a triangle.
/// squareSketch = startSketchOn('XY')
/// |> startProfileAt([-100, 200], %)
/// |> line([200, 0], %)
/// |> line([0, -200], %)
/// |> line([-200, 0], %)
/// |> lineTo([profileStartX(%), profileStartY(%)], %)
/// |> close(%)
///
/// triangleSketch = startSketchOn(offsetPlane('XY', 75))
/// |> startProfileAt([0, 125], %)
/// |> line([-15, -30], %)
/// |> line([30, 0], %)
/// |> lineTo([profileStartX(%), profileStartY(%)], %)
/// |> close(%)
///
/// loft([squareSketch, triangleSketch])
/// ```
///
/// ```no_run
/// // Loft a square, a circle, and another circle.
/// squareSketch = startSketchOn('XY')
/// |> startProfileAt([-100, 200], %)
/// |> line([200, 0], %)
/// |> line([0, -200], %)
/// |> line([-200, 0], %)
/// |> lineTo([profileStartX(%), profileStartY(%)], %)
/// |> close(%)
///
/// circleSketch0 = startSketchOn(offsetPlane('XY', 75))
/// |> circle({ center = [0, 100], radius = 50 }, %)
///
/// circleSketch1 = startSketchOn(offsetPlane('XY', 150))
/// |> circle({ center = [0, 100], radius = 20 }, %)
///
/// loft([squareSketch, circleSketch0, circleSketch1])
/// ```
///
/// ```no_run
/// // Loft a square, a circle, and another circle with options.
/// squareSketch = startSketchOn('XY')
/// |> startProfileAt([-100, 200], %)
/// |> line([200, 0], %)
/// |> line([0, -200], %)
/// |> line([-200, 0], %)
/// |> lineTo([profileStartX(%), profileStartY(%)], %)
/// |> close(%)
///
/// circleSketch0 = startSketchOn(offsetPlane('XY', 75))
/// |> circle({ center = [0, 100], radius = 50 }, %)
///
/// circleSketch1 = startSketchOn(offsetPlane('XY', 150))
/// |> circle({ center = [0, 100], radius = 20 }, %)
///
/// loft([squareSketch, circleSketch0, circleSketch1],
/// baseCurveIndex = 0,
/// bezApproximateRational = false,
/// tolerance = 0.000001,
/// vDegree = 2,
/// )
/// ```
#[stdlib {
name = "loft",
feature_tree_operation = true,
keywords = true,
unlabeled_first = true,
arg_docs = {
sketches = "Which sketches to loft. Must include at least 2 sketches.",
v_degree = "Degree of the interpolation. Must be greater than zero. For example, use 2 for quadratic, or 3 for cubic interpolation in the V direction. This defaults to 2, if not specified.",
bez_approximate_rational = "Attempt to approximate rational curves (such as arcs) using a bezier. This will remove banding around interpolations between arcs and non-arcs. It may produce errors in other scenarios Over time, this field won't be necessary.",
base_curve_index = "This can be set to override the automatically determined topological base curve, which is usually the first section encountered.",
tolerance = "Tolerance for the loft operation.",
}
}]
async fn inner_loft(
sketches: Vec<Sketch>,
v_degree: NonZeroU32,
bez_approximate_rational: bool,
base_curve_index: Option<u32>,
tolerance: Option<f64>,
exec_state: &mut ExecState,
args: Args,
) -> Result<Box<Solid>, KclError> {
// Make sure we have at least two sketches.
if sketches.len() < 2 {
return Err(KclError::Semantic(KclErrorDetails {
message: format!(
"Loft requires at least two sketches, but only {} were provided.",
sketches.len()
),
source_ranges: vec![args.source_range],
}));
}
let id = exec_state.next_uuid();
args.batch_modeling_cmd(
id,
ModelingCmd::from(mcmd::Loft {
section_ids: sketches.iter().map(|group| group.id).collect(),
base_curve_index,
bez_approximate_rational,
tolerance: LengthUnit(tolerance.unwrap_or(default_tolerance(&args.ctx.settings.units))),
v_degree,
}),
)
.await?;
// Using the first sketch as the base curve, idk we might want to change this later.
let mut sketch = sketches[0].clone();
// Override its id with the loft id so we can get its faces later
sketch.id = id;
do_post_extrude(sketch, 0.0, exec_state, args).await
}