kcl_lib/std/array.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
use derive_docs::stdlib;
use super::{
args::{Arg, FromArgs},
Args, FnAsArg,
};
use crate::{
errors::{KclError, KclErrorDetails},
execution::{ExecState, FunctionParam, KclValue},
source_range::SourceRange,
};
/// Apply a function to each element of an array.
pub async fn map(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let (array, f): (Vec<KclValue>, FnAsArg<'_>) = FromArgs::from_args(&args, 0)?;
let meta = vec![args.source_range.into()];
let map_fn = FunctionParam {
inner: f.func,
fn_expr: f.expr,
meta: meta.clone(),
ctx: args.ctx.clone(),
memory: *f.memory,
};
let new_array = inner_map(array, map_fn, exec_state, &args).await?;
Ok(KclValue::Array { value: new_array, meta })
}
/// Apply a function to every element of a list.
///
/// Given a list like `[a, b, c]`, and a function like `f`, returns
/// `[f(a), f(b), f(c)]`
/// ```no_run
/// r = 10 // radius
/// fn drawCircle(id) {
/// return startSketchOn("XY")
/// |> circle({ center: [id * 2 * r, 0], radius: r}, %)
/// }
///
/// // Call `drawCircle`, passing in each element of the array.
/// // The outputs from each `drawCircle` form a new array,
/// // which is the return value from `map`.
/// circles = map(
/// [1..3],
/// drawCircle
/// )
/// ```
/// ```no_run
/// r = 10 // radius
/// // Call `map`, using an anonymous function instead of a named one.
/// circles = map(
/// [1..3],
/// fn(id) {
/// return startSketchOn("XY")
/// |> circle({ center: [id * 2 * r, 0], radius: r}, %)
/// }
/// )
/// ```
#[stdlib {
name = "map",
}]
async fn inner_map<'a>(
array: Vec<KclValue>,
map_fn: FunctionParam<'a>,
exec_state: &mut ExecState,
args: &'a Args,
) -> Result<Vec<KclValue>, KclError> {
let mut new_array = Vec::with_capacity(array.len());
for elem in array {
let new_elem = call_map_closure(elem, &map_fn, args.source_range, exec_state).await?;
new_array.push(new_elem);
}
Ok(new_array)
}
async fn call_map_closure<'a>(
input: KclValue,
map_fn: &FunctionParam<'a>,
source_range: SourceRange,
exec_state: &mut ExecState,
) -> Result<KclValue, KclError> {
let output = map_fn.call(exec_state, vec![Arg::synthetic(input)]).await?;
let source_ranges = vec![source_range];
let output = output.ok_or_else(|| {
KclError::Semantic(KclErrorDetails {
message: "Map function must return a value".to_string(),
source_ranges,
})
})?;
Ok(output)
}
/// For each item in an array, update a value.
pub async fn reduce(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let (array, start, f): (Vec<KclValue>, KclValue, FnAsArg<'_>) = FromArgs::from_args(&args, 0)?;
let reduce_fn = FunctionParam {
inner: f.func,
fn_expr: f.expr,
meta: vec![args.source_range.into()],
ctx: args.ctx.clone(),
memory: *f.memory,
};
inner_reduce(array, start, reduce_fn, exec_state, &args).await
}
/// Take a starting value. Then, for each element of an array, calculate the next value,
/// using the previous value and the element.
/// ```no_run
/// // This function adds two numbers.
/// fn add(a, b) { return a + b }
///
/// // This function adds an array of numbers.
/// // It uses the `reduce` function, to call the `add` function on every
/// // element of the `arr` parameter. The starting value is 0.
/// fn sum(arr) { return reduce(arr, 0, add) }
///
/// /*
/// The above is basically like this pseudo-code:
/// fn sum(arr):
/// sumSoFar = 0
/// for i in arr:
/// sumSoFar = add(sumSoFar, i)
/// return sumSoFar
/// */
///
/// // We use `assertEqual` to check that our `sum` function gives the
/// // expected result. It's good to check your work!
/// assertEqual(sum([1, 2, 3]), 6, 0.00001, "1 + 2 + 3 summed is 6")
/// ```
/// ```no_run
/// // This example works just like the previous example above, but it uses
/// // an anonymous `add` function as its parameter, instead of declaring a
/// // named function outside.
/// arr = [1, 2, 3]
/// sum = reduce(arr, 0, (i, result_so_far) => { return i + result_so_far })
///
/// // We use `assertEqual` to check that our `sum` function gives the
/// // expected result. It's good to check your work!
/// assertEqual(sum, 6, 0.00001, "1 + 2 + 3 summed is 6")
/// ```
/// ```no_run
/// // Declare a function that sketches a decagon.
/// fn decagon(radius) {
/// // Each side of the decagon is turned this many degrees from the previous angle.
/// stepAngle = (1/10) * tau()
///
/// // Start the decagon sketch at this point.
/// startOfDecagonSketch = startSketchOn('XY')
/// |> startProfileAt([(cos(0)*radius), (sin(0) * radius)], %)
///
/// // Use a `reduce` to draw the remaining decagon sides.
/// // For each number in the array 1..10, run the given function,
/// // which takes a partially-sketched decagon and adds one more edge to it.
/// fullDecagon = reduce([1..10], startOfDecagonSketch, fn(i, partialDecagon) {
/// // Draw one edge of the decagon.
/// x = cos(stepAngle * i) * radius
/// y = sin(stepAngle * i) * radius
/// return lineTo([x, y], partialDecagon)
/// })
///
/// return fullDecagon
///
/// }
///
/// /*
/// The `decagon` above is basically like this pseudo-code:
/// fn decagon(radius):
/// stepAngle = (1/10) * tau()
/// plane = startSketchOn('XY')
/// startOfDecagonSketch = startProfileAt([(cos(0)*radius), (sin(0) * radius)], plane)
///
/// // Here's the reduce part.
/// partialDecagon = startOfDecagonSketch
/// for i in [1..10]:
/// x = cos(stepAngle * i) * radius
/// y = sin(stepAngle * i) * radius
/// partialDecagon = lineTo([x, y], partialDecagon)
/// fullDecagon = partialDecagon // it's now full
/// return fullDecagon
/// */
///
/// // Use the `decagon` function declared above, to sketch a decagon with radius 5.
/// decagon(5.0) |> close(%)
/// ```
#[stdlib {
name = "reduce",
}]
async fn inner_reduce<'a>(
array: Vec<KclValue>,
start: KclValue,
reduce_fn: FunctionParam<'a>,
exec_state: &mut ExecState,
args: &'a Args,
) -> Result<KclValue, KclError> {
let mut reduced = start;
for elem in array {
reduced = call_reduce_closure(elem, reduced, &reduce_fn, args.source_range, exec_state).await?;
}
Ok(reduced)
}
async fn call_reduce_closure<'a>(
elem: KclValue,
start: KclValue,
reduce_fn: &FunctionParam<'a>,
source_range: SourceRange,
exec_state: &mut ExecState,
) -> Result<KclValue, KclError> {
// Call the reduce fn for this repetition.
let reduce_fn_args = vec![Arg::synthetic(elem), Arg::synthetic(start)];
let transform_fn_return = reduce_fn.call(exec_state, reduce_fn_args).await?;
// Unpack the returned transform object.
let source_ranges = vec![source_range];
let out = transform_fn_return.ok_or_else(|| {
KclError::Semantic(KclErrorDetails {
message: "Reducer function must return a value".to_string(),
source_ranges: source_ranges.clone(),
})
})?;
Ok(out)
}
/// Append an element to the end of an array.
///
/// Returns a new array with the element appended.
///
/// ```no_run
/// arr = [1, 2, 3]
/// new_arr = push(arr, 4)
/// assertEqual(new_arr[3], 4, 0.00001, "4 was added to the end of the array")
/// ```
#[stdlib {
name = "push",
}]
async fn inner_push(mut array: Vec<KclValue>, elem: KclValue, args: &Args) -> Result<KclValue, KclError> {
// Unwrap the KclValues to JValues for manipulation
array.push(elem);
Ok(KclValue::Array {
value: array,
meta: vec![args.source_range.into()],
})
}
pub async fn push(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
// Extract the array and the element from the arguments
let (val, elem): (KclValue, KclValue) = FromArgs::from_args(&args, 0)?;
let meta = vec![args.source_range];
let KclValue::Array { value: array, meta: _ } = val else {
let actual_type = val.human_friendly_type();
return Err(KclError::Semantic(KclErrorDetails {
source_ranges: meta,
message: format!("You can't push to a value of type {actual_type}, only an array"),
}));
};
inner_push(array, elem, &args).await
}
/// Remove the last element from an array.
///
/// Returns a new array with the last element removed.
///
/// ```no_run
/// arr = [1, 2, 3, 4]
/// new_arr = pop(arr)
/// assertEqual(new_arr[0], 1, 0.00001, "1 is the first element of the array")
/// assertEqual(new_arr[1], 2, 0.00001, "2 is the second element of the array")
/// assertEqual(new_arr[2], 3, 0.00001, "3 is the third element of the array")
/// ```
#[stdlib {
name = "pop",
keywords = true,
unlabeled_first = true,
arg_docs = {
array = "The array to pop from. Must not be empty.",
}
}]
async fn inner_pop(array: Vec<KclValue>, args: &Args) -> Result<KclValue, KclError> {
if array.is_empty() {
return Err(KclError::Semantic(KclErrorDetails {
message: "Cannot pop from an empty array".to_string(),
source_ranges: vec![args.source_range],
}));
}
// Create a new array with all elements except the last one
let new_array = array[..array.len() - 1].to_vec();
Ok(KclValue::Array {
value: new_array,
meta: vec![args.source_range.into()],
})
}
pub async fn pop(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
// Extract the array from the arguments
let val = args.get_unlabeled_kw_arg("array")?;
let meta = vec![args.source_range];
let KclValue::Array { value: array, meta: _ } = val else {
let actual_type = val.human_friendly_type();
return Err(KclError::Semantic(KclErrorDetails {
source_ranges: meta,
message: format!("You can't pop from a value of type {actual_type}, only an array"),
}));
};
inner_pop(array, &args).await
}