kcl_lib/std/
patterns.rs

1//! Standard library patterns.
2
3use std::cmp::Ordering;
4
5use anyhow::Result;
6use kcmc::{
7    ModelingCmd, each_cmd as mcmd, length_unit::LengthUnit, ok_response::OkModelingCmdResponse, shared::Transform,
8    websocket::OkWebSocketResponseData,
9};
10use kittycad_modeling_cmds::{
11    self as kcmc,
12    shared::{Angle, OriginType, Rotation},
13};
14use serde::Serialize;
15use uuid::Uuid;
16
17use super::axis_or_reference::Axis3dOrPoint3d;
18use crate::{
19    ExecutorContext, SourceRange,
20    errors::{KclError, KclErrorDetails},
21    execution::{
22        ControlFlowKind, ExecState, Geometries, Geometry, KclObjectFields, KclValue, ModelingCmdMeta, Sketch, Solid,
23        fn_call::{Arg, Args},
24        kcl_value::FunctionSource,
25        types::{NumericType, PrimitiveType, RuntimeType},
26    },
27    std::{
28        args::TyF64,
29        axis_or_reference::Axis2dOrPoint2d,
30        utils::{point_3d_to_mm, point_to_mm},
31    },
32};
33
34const MUST_HAVE_ONE_INSTANCE: &str = "There must be at least 1 instance of your geometry";
35
36/// Repeat some 3D solid, changing each repetition slightly.
37pub async fn pattern_transform(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
38    let solids = args.get_unlabeled_kw_arg("solids", &RuntimeType::solids(), exec_state)?;
39    let instances: u32 = args.get_kw_arg("instances", &RuntimeType::count(), exec_state)?;
40    let transform: FunctionSource = args.get_kw_arg("transform", &RuntimeType::function(), exec_state)?;
41    let use_original = args.get_kw_arg_opt("useOriginal", &RuntimeType::bool(), exec_state)?;
42
43    let solids = inner_pattern_transform(solids, instances, transform, use_original, exec_state, &args).await?;
44    Ok(solids.into())
45}
46
47/// Repeat some 2D sketch, changing each repetition slightly.
48pub async fn pattern_transform_2d(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
49    let sketches = args.get_unlabeled_kw_arg("sketches", &RuntimeType::sketches(), exec_state)?;
50    let instances: u32 = args.get_kw_arg("instances", &RuntimeType::count(), exec_state)?;
51    let transform: FunctionSource = args.get_kw_arg("transform", &RuntimeType::function(), exec_state)?;
52    let use_original = args.get_kw_arg_opt("useOriginal", &RuntimeType::bool(), exec_state)?;
53
54    let sketches = inner_pattern_transform_2d(sketches, instances, transform, use_original, exec_state, &args).await?;
55    Ok(sketches.into())
56}
57
58async fn inner_pattern_transform(
59    solids: Vec<Solid>,
60    instances: u32,
61    transform: FunctionSource,
62    use_original: Option<bool>,
63    exec_state: &mut ExecState,
64    args: &Args,
65) -> Result<Vec<Solid>, KclError> {
66    // Build the vec of transforms, one for each repetition.
67    let mut transform_vec = Vec::with_capacity(usize::try_from(instances).unwrap());
68    if instances < 1 {
69        return Err(KclError::new_semantic(KclErrorDetails::new(
70            MUST_HAVE_ONE_INSTANCE.to_owned(),
71            vec![args.source_range],
72        )));
73    }
74    for i in 1..instances {
75        let t = make_transform::<Solid>(i, &transform, args.source_range, exec_state, &args.ctx).await?;
76        transform_vec.push(t);
77    }
78    execute_pattern_transform(
79        transform_vec,
80        solids,
81        use_original.unwrap_or_default(),
82        exec_state,
83        args,
84    )
85    .await
86}
87
88async fn inner_pattern_transform_2d(
89    sketches: Vec<Sketch>,
90    instances: u32,
91    transform: FunctionSource,
92    use_original: Option<bool>,
93    exec_state: &mut ExecState,
94    args: &Args,
95) -> Result<Vec<Sketch>, KclError> {
96    // Build the vec of transforms, one for each repetition.
97    let mut transform_vec = Vec::with_capacity(usize::try_from(instances).unwrap());
98    if instances < 1 {
99        return Err(KclError::new_semantic(KclErrorDetails::new(
100            MUST_HAVE_ONE_INSTANCE.to_owned(),
101            vec![args.source_range],
102        )));
103    }
104    for i in 1..instances {
105        let t = make_transform::<Sketch>(i, &transform, args.source_range, exec_state, &args.ctx).await?;
106        transform_vec.push(t);
107    }
108    execute_pattern_transform(
109        transform_vec,
110        sketches,
111        use_original.unwrap_or_default(),
112        exec_state,
113        args,
114    )
115    .await
116}
117
118async fn execute_pattern_transform<T: GeometryTrait>(
119    transforms: Vec<Vec<Transform>>,
120    geo_set: T::Set,
121    use_original: bool,
122    exec_state: &mut ExecState,
123    args: &Args,
124) -> Result<Vec<T>, KclError> {
125    // Flush the batch for our fillets/chamfers if there are any.
126    // If we do not flush these, then you won't be able to pattern something with fillets.
127    // Flush just the fillets/chamfers that apply to these solids.
128    T::flush_batch(args, exec_state, &geo_set).await?;
129    let starting: Vec<T> = geo_set.into();
130
131    if args.ctx.context_type == crate::execution::ContextType::Mock {
132        return Ok(starting);
133    }
134
135    let mut output = Vec::new();
136    for geo in starting {
137        let new = send_pattern_transform(transforms.clone(), &geo, use_original, exec_state, args).await?;
138        output.extend(new)
139    }
140    Ok(output)
141}
142
143async fn send_pattern_transform<T: GeometryTrait>(
144    // This should be passed via reference, see
145    // https://github.com/KittyCAD/modeling-app/issues/2821
146    transforms: Vec<Vec<Transform>>,
147    solid: &T,
148    use_original: bool,
149    exec_state: &mut ExecState,
150    args: &Args,
151) -> Result<Vec<T>, KclError> {
152    let extra_instances = transforms.len();
153
154    let resp = exec_state
155        .send_modeling_cmd(
156            ModelingCmdMeta::from_args(exec_state, args),
157            ModelingCmd::from(
158                mcmd::EntityLinearPatternTransform::builder()
159                    .entity_id(if use_original { solid.original_id() } else { solid.id() })
160                    .transform(Default::default())
161                    .transforms(transforms)
162                    .build(),
163            ),
164        )
165        .await?;
166
167    let mut mock_ids = Vec::new();
168    let entity_ids = if let OkWebSocketResponseData::Modeling {
169        modeling_response: OkModelingCmdResponse::EntityLinearPatternTransform(pattern_info),
170    } = &resp
171    {
172        &pattern_info.entity_face_edge_ids.iter().map(|x| x.object_id).collect()
173    } else if args.ctx.no_engine_commands().await {
174        mock_ids.reserve(extra_instances);
175        for _ in 0..extra_instances {
176            mock_ids.push(exec_state.next_uuid());
177        }
178        &mock_ids
179    } else {
180        return Err(KclError::new_engine(KclErrorDetails::new(
181            format!("EntityLinearPattern response was not as expected: {resp:?}"),
182            vec![args.source_range],
183        )));
184    };
185
186    let mut geometries = vec![solid.clone()];
187    for id in entity_ids.iter().copied() {
188        let mut new_solid = solid.clone();
189        new_solid.set_id(id);
190        geometries.push(new_solid);
191    }
192    Ok(geometries)
193}
194
195async fn make_transform<T: GeometryTrait>(
196    i: u32,
197    transform: &FunctionSource,
198    source_range: SourceRange,
199    exec_state: &mut ExecState,
200    ctxt: &ExecutorContext,
201) -> Result<Vec<Transform>, KclError> {
202    // Call the transform fn for this repetition.
203    let repetition_num = KclValue::Number {
204        value: i.into(),
205        ty: NumericType::count(),
206        meta: vec![source_range.into()],
207    };
208    let transform_fn_args = Args::new(
209        Default::default(),
210        vec![(None, Arg::new(repetition_num, source_range))],
211        source_range,
212        exec_state,
213        ctxt.clone(),
214        Some("transform closure".to_owned()),
215    );
216    let transform_fn_return = transform
217        .call_kw(None, exec_state, ctxt, transform_fn_args, source_range)
218        .await?;
219
220    // Unpack the returned transform object.
221    let source_ranges = vec![source_range];
222    let transform_fn_return = transform_fn_return.ok_or_else(|| {
223        KclError::new_semantic(KclErrorDetails::new(
224            "Transform function must return a value".to_string(),
225            source_ranges.clone(),
226        ))
227    })?;
228
229    let transform_fn_return = match transform_fn_return.control {
230        ControlFlowKind::Continue => transform_fn_return.into_value(),
231        ControlFlowKind::Exit => {
232            let message = "Early return inside pattern transform function is currently not supported".to_owned();
233            debug_assert!(false, "{}", &message);
234            return Err(KclError::new_internal(KclErrorDetails::new(
235                message,
236                vec![source_range],
237            )));
238        }
239    };
240
241    let transforms = match transform_fn_return {
242        KclValue::Object { value, .. } => vec![value],
243        KclValue::Tuple { value, .. } | KclValue::HomArray { value, .. } => {
244            let transforms: Vec<_> = value
245                .into_iter()
246                .map(|val| {
247                    val.into_object().ok_or(KclError::new_semantic(KclErrorDetails::new(
248                        "Transform function must return a transform object".to_string(),
249                        source_ranges.clone(),
250                    )))
251                })
252                .collect::<Result<_, _>>()?;
253            transforms
254        }
255        _ => {
256            return Err(KclError::new_semantic(KclErrorDetails::new(
257                "Transform function must return a transform object".to_string(),
258                source_ranges,
259            )));
260        }
261    };
262
263    transforms
264        .into_iter()
265        .map(|obj| transform_from_obj_fields::<T>(obj, source_ranges.clone(), exec_state))
266        .collect()
267}
268
269fn transform_from_obj_fields<T: GeometryTrait>(
270    transform: KclObjectFields,
271    source_ranges: Vec<SourceRange>,
272    exec_state: &mut ExecState,
273) -> Result<Transform, KclError> {
274    // Apply defaults to the transform.
275    let replicate = match transform.get("replicate") {
276        Some(KclValue::Bool { value: true, .. }) => true,
277        Some(KclValue::Bool { value: false, .. }) => false,
278        Some(_) => {
279            return Err(KclError::new_semantic(KclErrorDetails::new(
280                "The 'replicate' key must be a bool".to_string(),
281                source_ranges,
282            )));
283        }
284        None => true,
285    };
286
287    let scale = match transform.get("scale") {
288        Some(x) => point_3d_to_mm(T::array_to_point3d(x, source_ranges.clone(), exec_state)?).into(),
289        None => kcmc::shared::Point3d { x: 1.0, y: 1.0, z: 1.0 },
290    };
291
292    let translate = match transform.get("translate") {
293        Some(x) => {
294            let arr = point_3d_to_mm(T::array_to_point3d(x, source_ranges.clone(), exec_state)?);
295            kcmc::shared::Point3d::<LengthUnit> {
296                x: LengthUnit(arr[0]),
297                y: LengthUnit(arr[1]),
298                z: LengthUnit(arr[2]),
299            }
300        }
301        None => kcmc::shared::Point3d::<LengthUnit> {
302            x: LengthUnit(0.0),
303            y: LengthUnit(0.0),
304            z: LengthUnit(0.0),
305        },
306    };
307
308    let mut rotation = Rotation::default();
309    if let Some(rot) = transform.get("rotation") {
310        let KclValue::Object { value: rot, .. } = rot else {
311            return Err(KclError::new_semantic(KclErrorDetails::new(
312                "The 'rotation' key must be an object (with optional fields 'angle', 'axis' and 'origin')".to_owned(),
313                source_ranges,
314            )));
315        };
316        if let Some(axis) = rot.get("axis") {
317            rotation.axis = point_3d_to_mm(T::array_to_point3d(axis, source_ranges.clone(), exec_state)?).into();
318        }
319        if let Some(angle) = rot.get("angle") {
320            match angle {
321                KclValue::Number { value: number, .. } => {
322                    rotation.angle = Angle::from_degrees(*number);
323                }
324                _ => {
325                    return Err(KclError::new_semantic(KclErrorDetails::new(
326                        "The 'rotation.angle' key must be a number (of degrees)".to_owned(),
327                        source_ranges,
328                    )));
329                }
330            }
331        }
332        if let Some(origin) = rot.get("origin") {
333            rotation.origin = match origin {
334                KclValue::String { value: s, meta: _ } if s == "local" => OriginType::Local,
335                KclValue::String { value: s, meta: _ } if s == "global" => OriginType::Global,
336                other => {
337                    let origin = point_3d_to_mm(T::array_to_point3d(other, source_ranges, exec_state)?).into();
338                    OriginType::Custom { origin }
339                }
340            };
341        }
342    }
343
344    Ok(Transform {
345        replicate,
346        scale,
347        translate,
348        rotation,
349    })
350}
351
352fn array_to_point3d(
353    val: &KclValue,
354    source_ranges: Vec<SourceRange>,
355    exec_state: &mut ExecState,
356) -> Result<[TyF64; 3], KclError> {
357    val.coerce(&RuntimeType::point3d(), true, exec_state)
358        .map_err(|e| {
359            KclError::new_semantic(KclErrorDetails::new(
360                format!(
361                    "Expected an array of 3 numbers (i.e., a 3D point), found {}",
362                    e.found
363                        .map(|t| t.human_friendly_type())
364                        .unwrap_or_else(|| val.human_friendly_type())
365                ),
366                source_ranges,
367            ))
368        })
369        .map(|val| val.as_point3d().unwrap())
370}
371
372fn array_to_point2d(
373    val: &KclValue,
374    source_ranges: Vec<SourceRange>,
375    exec_state: &mut ExecState,
376) -> Result<[TyF64; 2], KclError> {
377    val.coerce(&RuntimeType::point2d(), true, exec_state)
378        .map_err(|e| {
379            KclError::new_semantic(KclErrorDetails::new(
380                format!(
381                    "Expected an array of 2 numbers (i.e., a 2D point), found {}",
382                    e.found
383                        .map(|t| t.human_friendly_type())
384                        .unwrap_or_else(|| val.human_friendly_type())
385                ),
386                source_ranges,
387            ))
388        })
389        .map(|val| val.as_point2d().unwrap())
390}
391
392pub trait GeometryTrait: Clone {
393    type Set: Into<Vec<Self>> + Clone;
394    fn id(&self) -> Uuid;
395    fn original_id(&self) -> Uuid;
396    fn set_id(&mut self, id: Uuid);
397    fn array_to_point3d(
398        val: &KclValue,
399        source_ranges: Vec<SourceRange>,
400        exec_state: &mut ExecState,
401    ) -> Result<[TyF64; 3], KclError>;
402    #[allow(async_fn_in_trait)]
403    async fn flush_batch(args: &Args, exec_state: &mut ExecState, set: &Self::Set) -> Result<(), KclError>;
404}
405
406impl GeometryTrait for Sketch {
407    type Set = Vec<Sketch>;
408    fn set_id(&mut self, id: Uuid) {
409        self.id = id;
410    }
411    fn id(&self) -> Uuid {
412        self.id
413    }
414    fn original_id(&self) -> Uuid {
415        self.original_id
416    }
417    fn array_to_point3d(
418        val: &KclValue,
419        source_ranges: Vec<SourceRange>,
420        exec_state: &mut ExecState,
421    ) -> Result<[TyF64; 3], KclError> {
422        let [x, y] = array_to_point2d(val, source_ranges, exec_state)?;
423        let ty = x.ty;
424        Ok([x, y, TyF64::new(0.0, ty)])
425    }
426
427    async fn flush_batch(_: &Args, _: &mut ExecState, _: &Self::Set) -> Result<(), KclError> {
428        Ok(())
429    }
430}
431
432impl GeometryTrait for Solid {
433    type Set = Vec<Solid>;
434    fn set_id(&mut self, id: Uuid) {
435        self.id = id;
436        // We need this for in extrude.rs when you sketch on face.
437        self.sketch.id = id;
438    }
439
440    fn id(&self) -> Uuid {
441        self.id
442    }
443
444    fn original_id(&self) -> Uuid {
445        self.sketch.original_id
446    }
447
448    fn array_to_point3d(
449        val: &KclValue,
450        source_ranges: Vec<SourceRange>,
451        exec_state: &mut ExecState,
452    ) -> Result<[TyF64; 3], KclError> {
453        array_to_point3d(val, source_ranges, exec_state)
454    }
455
456    async fn flush_batch(args: &Args, exec_state: &mut ExecState, solid_set: &Self::Set) -> Result<(), KclError> {
457        exec_state
458            .flush_batch_for_solids(ModelingCmdMeta::from_args(exec_state, args), solid_set)
459            .await
460    }
461}
462
463#[cfg(test)]
464mod tests {
465    use super::*;
466    use crate::execution::types::{NumericType, PrimitiveType};
467
468    #[tokio::test(flavor = "multi_thread")]
469    async fn test_array_to_point3d() {
470        let ctx = ExecutorContext::new_mock(None).await;
471        let mut exec_state = ExecState::new(&ctx);
472        let input = KclValue::HomArray {
473            value: vec![
474                KclValue::Number {
475                    value: 1.1,
476                    meta: Default::default(),
477                    ty: NumericType::mm(),
478                },
479                KclValue::Number {
480                    value: 2.2,
481                    meta: Default::default(),
482                    ty: NumericType::mm(),
483                },
484                KclValue::Number {
485                    value: 3.3,
486                    meta: Default::default(),
487                    ty: NumericType::mm(),
488                },
489            ],
490            ty: RuntimeType::Primitive(PrimitiveType::Number(NumericType::mm())),
491        };
492        let expected = [
493            TyF64::new(1.1, NumericType::mm()),
494            TyF64::new(2.2, NumericType::mm()),
495            TyF64::new(3.3, NumericType::mm()),
496        ];
497        let actual = array_to_point3d(&input, Vec::new(), &mut exec_state);
498        assert_eq!(actual.unwrap(), expected);
499        ctx.close().await;
500    }
501
502    #[tokio::test(flavor = "multi_thread")]
503    async fn test_tuple_to_point3d() {
504        let ctx = ExecutorContext::new_mock(None).await;
505        let mut exec_state = ExecState::new(&ctx);
506        let input = KclValue::Tuple {
507            value: vec![
508                KclValue::Number {
509                    value: 1.1,
510                    meta: Default::default(),
511                    ty: NumericType::mm(),
512                },
513                KclValue::Number {
514                    value: 2.2,
515                    meta: Default::default(),
516                    ty: NumericType::mm(),
517                },
518                KclValue::Number {
519                    value: 3.3,
520                    meta: Default::default(),
521                    ty: NumericType::mm(),
522                },
523            ],
524            meta: Default::default(),
525        };
526        let expected = [
527            TyF64::new(1.1, NumericType::mm()),
528            TyF64::new(2.2, NumericType::mm()),
529            TyF64::new(3.3, NumericType::mm()),
530        ];
531        let actual = array_to_point3d(&input, Vec::new(), &mut exec_state);
532        assert_eq!(actual.unwrap(), expected);
533        ctx.close().await;
534    }
535}
536
537/// A linear pattern on a 2D sketch.
538pub async fn pattern_linear_2d(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
539    let sketches = args.get_unlabeled_kw_arg("sketches", &RuntimeType::sketches(), exec_state)?;
540    let instances: u32 = args.get_kw_arg("instances", &RuntimeType::count(), exec_state)?;
541    let distance: TyF64 = args.get_kw_arg("distance", &RuntimeType::length(), exec_state)?;
542    let axis: Axis2dOrPoint2d = args.get_kw_arg(
543        "axis",
544        &RuntimeType::Union(vec![
545            RuntimeType::Primitive(PrimitiveType::Axis2d),
546            RuntimeType::point2d(),
547        ]),
548        exec_state,
549    )?;
550    let use_original = args.get_kw_arg_opt("useOriginal", &RuntimeType::bool(), exec_state)?;
551
552    let axis = axis.to_point2d();
553    if axis[0].n == 0.0 && axis[1].n == 0.0 {
554        return Err(KclError::new_semantic(KclErrorDetails::new(
555            "The axis of the linear pattern cannot be the zero vector. Otherwise they will just duplicate in place."
556                .to_owned(),
557            vec![args.source_range],
558        )));
559    }
560
561    let sketches = inner_pattern_linear_2d(sketches, instances, distance, axis, use_original, exec_state, args).await?;
562    Ok(sketches.into())
563}
564
565async fn inner_pattern_linear_2d(
566    sketches: Vec<Sketch>,
567    instances: u32,
568    distance: TyF64,
569    axis: [TyF64; 2],
570    use_original: Option<bool>,
571    exec_state: &mut ExecState,
572    args: Args,
573) -> Result<Vec<Sketch>, KclError> {
574    let [x, y] = point_to_mm(axis);
575    let axis_len = f64::sqrt(x * x + y * y);
576    let normalized_axis = kcmc::shared::Point2d::from([x / axis_len, y / axis_len]);
577    let transforms: Vec<_> = (1..instances)
578        .map(|i| {
579            let d = distance.to_mm() * (i as f64);
580            let translate = (normalized_axis * d).with_z(0.0).map(LengthUnit);
581            vec![Transform {
582                translate,
583                ..Default::default()
584            }]
585        })
586        .collect();
587    execute_pattern_transform(
588        transforms,
589        sketches,
590        use_original.unwrap_or_default(),
591        exec_state,
592        &args,
593    )
594    .await
595}
596
597/// A linear pattern on a 3D model.
598pub async fn pattern_linear_3d(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
599    let solids = args.get_unlabeled_kw_arg("solids", &RuntimeType::solids(), exec_state)?;
600    let instances: u32 = args.get_kw_arg("instances", &RuntimeType::count(), exec_state)?;
601    let distance: TyF64 = args.get_kw_arg("distance", &RuntimeType::length(), exec_state)?;
602    let axis: Axis3dOrPoint3d = args.get_kw_arg(
603        "axis",
604        &RuntimeType::Union(vec![
605            RuntimeType::Primitive(PrimitiveType::Axis3d),
606            RuntimeType::point3d(),
607        ]),
608        exec_state,
609    )?;
610    let use_original = args.get_kw_arg_opt("useOriginal", &RuntimeType::bool(), exec_state)?;
611
612    let axis = axis.to_point3d();
613    if axis[0].n == 0.0 && axis[1].n == 0.0 && axis[2].n == 0.0 {
614        return Err(KclError::new_semantic(KclErrorDetails::new(
615            "The axis of the linear pattern cannot be the zero vector. Otherwise they will just duplicate in place."
616                .to_owned(),
617            vec![args.source_range],
618        )));
619    }
620
621    let solids = inner_pattern_linear_3d(solids, instances, distance, axis, use_original, exec_state, args).await?;
622    Ok(solids.into())
623}
624
625async fn inner_pattern_linear_3d(
626    solids: Vec<Solid>,
627    instances: u32,
628    distance: TyF64,
629    axis: [TyF64; 3],
630    use_original: Option<bool>,
631    exec_state: &mut ExecState,
632    args: Args,
633) -> Result<Vec<Solid>, KclError> {
634    let [x, y, z] = point_3d_to_mm(axis);
635    let axis_len = f64::sqrt(x * x + y * y + z * z);
636    let normalized_axis = kcmc::shared::Point3d::from([x / axis_len, y / axis_len, z / axis_len]);
637    let transforms: Vec<_> = (1..instances)
638        .map(|i| {
639            let d = distance.to_mm() * (i as f64);
640            let translate = (normalized_axis * d).map(LengthUnit);
641            vec![Transform {
642                translate,
643                ..Default::default()
644            }]
645        })
646        .collect();
647    execute_pattern_transform(transforms, solids, use_original.unwrap_or_default(), exec_state, &args).await
648}
649
650/// Data for a circular pattern on a 2D sketch.
651#[derive(Debug, Clone, Serialize, PartialEq)]
652#[serde(rename_all = "camelCase")]
653struct CircularPattern2dData {
654    /// The number of total instances. Must be greater than or equal to 1.
655    /// This includes the original entity. For example, if instances is 2,
656    /// there will be two copies -- the original, and one new copy.
657    /// If instances is 1, this has no effect.
658    pub instances: u32,
659    /// The center about which to make the pattern. This is a 2D vector.
660    pub center: [TyF64; 2],
661    /// The arc angle (in degrees) to place the repetitions. Must be greater than 0.
662    pub arc_degrees: Option<f64>,
663    /// Whether or not to rotate the duplicates as they are copied.
664    pub rotate_duplicates: Option<bool>,
665    /// If the target being patterned is itself a pattern, then, should you use the original solid,
666    /// or the pattern?
667    #[serde(default)]
668    pub use_original: Option<bool>,
669}
670
671/// Data for a circular pattern on a 3D model.
672#[derive(Debug, Clone, Serialize, PartialEq)]
673#[serde(rename_all = "camelCase")]
674struct CircularPattern3dData {
675    /// The number of total instances. Must be greater than or equal to 1.
676    /// This includes the original entity. For example, if instances is 2,
677    /// there will be two copies -- the original, and one new copy.
678    /// If instances is 1, this has no effect.
679    pub instances: u32,
680    /// The axis around which to make the pattern. This is a 3D vector.
681    // Only the direction should matter, not the magnitude so don't adjust units to avoid normalisation issues.
682    pub axis: [f64; 3],
683    /// The center about which to make the pattern. This is a 3D vector.
684    pub center: [TyF64; 3],
685    /// The arc angle (in degrees) to place the repetitions. Must be greater than 0.
686    pub arc_degrees: Option<f64>,
687    /// Whether or not to rotate the duplicates as they are copied.
688    pub rotate_duplicates: Option<bool>,
689    /// If the target being patterned is itself a pattern, then, should you use the original solid,
690    /// or the pattern?
691    #[serde(default)]
692    pub use_original: Option<bool>,
693}
694
695#[allow(clippy::large_enum_variant)]
696enum CircularPattern {
697    ThreeD(CircularPattern3dData),
698    TwoD(CircularPattern2dData),
699}
700
701enum RepetitionsNeeded {
702    /// Add this number of repetitions
703    More(u32),
704    /// No repetitions needed
705    None,
706    /// Invalid number of total instances.
707    Invalid,
708}
709
710impl From<u32> for RepetitionsNeeded {
711    fn from(n: u32) -> Self {
712        match n.cmp(&1) {
713            Ordering::Less => Self::Invalid,
714            Ordering::Equal => Self::None,
715            Ordering::Greater => Self::More(n - 1),
716        }
717    }
718}
719
720impl CircularPattern {
721    pub fn axis(&self) -> [f64; 3] {
722        match self {
723            CircularPattern::TwoD(_lp) => [0.0, 0.0, 0.0],
724            CircularPattern::ThreeD(lp) => [lp.axis[0], lp.axis[1], lp.axis[2]],
725        }
726    }
727
728    pub fn center_mm(&self) -> [f64; 3] {
729        match self {
730            CircularPattern::TwoD(lp) => [lp.center[0].to_mm(), lp.center[1].to_mm(), 0.0],
731            CircularPattern::ThreeD(lp) => [lp.center[0].to_mm(), lp.center[1].to_mm(), lp.center[2].to_mm()],
732        }
733    }
734
735    fn repetitions(&self) -> RepetitionsNeeded {
736        let n = match self {
737            CircularPattern::TwoD(lp) => lp.instances,
738            CircularPattern::ThreeD(lp) => lp.instances,
739        };
740        RepetitionsNeeded::from(n)
741    }
742
743    pub fn arc_degrees(&self) -> Option<f64> {
744        match self {
745            CircularPattern::TwoD(lp) => lp.arc_degrees,
746            CircularPattern::ThreeD(lp) => lp.arc_degrees,
747        }
748    }
749
750    pub fn rotate_duplicates(&self) -> Option<bool> {
751        match self {
752            CircularPattern::TwoD(lp) => lp.rotate_duplicates,
753            CircularPattern::ThreeD(lp) => lp.rotate_duplicates,
754        }
755    }
756
757    pub fn use_original(&self) -> bool {
758        match self {
759            CircularPattern::TwoD(lp) => lp.use_original.unwrap_or_default(),
760            CircularPattern::ThreeD(lp) => lp.use_original.unwrap_or_default(),
761        }
762    }
763}
764
765/// A circular pattern on a 2D sketch.
766pub async fn pattern_circular_2d(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
767    let sketches = args.get_unlabeled_kw_arg("sketches", &RuntimeType::sketches(), exec_state)?;
768    let instances: u32 = args.get_kw_arg("instances", &RuntimeType::count(), exec_state)?;
769    let center: [TyF64; 2] = args.get_kw_arg("center", &RuntimeType::point2d(), exec_state)?;
770    let arc_degrees: Option<TyF64> = args.get_kw_arg_opt("arcDegrees", &RuntimeType::degrees(), exec_state)?;
771    let rotate_duplicates = args.get_kw_arg_opt("rotateDuplicates", &RuntimeType::bool(), exec_state)?;
772    let use_original = args.get_kw_arg_opt("useOriginal", &RuntimeType::bool(), exec_state)?;
773
774    let sketches = inner_pattern_circular_2d(
775        sketches,
776        instances,
777        center,
778        arc_degrees.map(|x| x.n),
779        rotate_duplicates,
780        use_original,
781        exec_state,
782        args,
783    )
784    .await?;
785    Ok(sketches.into())
786}
787
788#[allow(clippy::too_many_arguments)]
789async fn inner_pattern_circular_2d(
790    sketch_set: Vec<Sketch>,
791    instances: u32,
792    center: [TyF64; 2],
793    arc_degrees: Option<f64>,
794    rotate_duplicates: Option<bool>,
795    use_original: Option<bool>,
796    exec_state: &mut ExecState,
797    args: Args,
798) -> Result<Vec<Sketch>, KclError> {
799    let starting_sketches = sketch_set;
800
801    if args.ctx.context_type == crate::execution::ContextType::Mock {
802        return Ok(starting_sketches);
803    }
804    let data = CircularPattern2dData {
805        instances,
806        center,
807        arc_degrees,
808        rotate_duplicates,
809        use_original,
810    };
811
812    let mut sketches = Vec::new();
813    for sketch in starting_sketches.iter() {
814        let geometries = pattern_circular(
815            CircularPattern::TwoD(data.clone()),
816            Geometry::Sketch(sketch.clone()),
817            exec_state,
818            args.clone(),
819        )
820        .await?;
821
822        let Geometries::Sketches(new_sketches) = geometries else {
823            return Err(KclError::new_semantic(KclErrorDetails::new(
824                "Expected a vec of sketches".to_string(),
825                vec![args.source_range],
826            )));
827        };
828
829        sketches.extend(new_sketches);
830    }
831
832    Ok(sketches)
833}
834
835/// A circular pattern on a 3D model.
836pub async fn pattern_circular_3d(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
837    let solids = args.get_unlabeled_kw_arg("solids", &RuntimeType::solids(), exec_state)?;
838    // The number of total instances. Must be greater than or equal to 1.
839    // This includes the original entity. For example, if instances is 2,
840    // there will be two copies -- the original, and one new copy.
841    // If instances is 1, this has no effect.
842    let instances: u32 = args.get_kw_arg("instances", &RuntimeType::count(), exec_state)?;
843    // The axis around which to make the pattern. This is a 3D vector.
844    let axis: Axis3dOrPoint3d = args.get_kw_arg(
845        "axis",
846        &RuntimeType::Union(vec![
847            RuntimeType::Primitive(PrimitiveType::Axis3d),
848            RuntimeType::point3d(),
849        ]),
850        exec_state,
851    )?;
852    let axis = axis.to_point3d();
853
854    // The center about which to make the pattern. This is a 3D vector.
855    let center: [TyF64; 3] = args.get_kw_arg("center", &RuntimeType::point3d(), exec_state)?;
856    // The arc angle (in degrees) to place the repetitions. Must be greater than 0.
857    let arc_degrees: Option<TyF64> = args.get_kw_arg_opt("arcDegrees", &RuntimeType::degrees(), exec_state)?;
858    // Whether or not to rotate the duplicates as they are copied.
859    let rotate_duplicates = args.get_kw_arg_opt("rotateDuplicates", &RuntimeType::bool(), exec_state)?;
860    // If the target being patterned is itself a pattern, then, should you use the original solid,
861    // or the pattern?
862    let use_original = args.get_kw_arg_opt("useOriginal", &RuntimeType::bool(), exec_state)?;
863
864    let solids = inner_pattern_circular_3d(
865        solids,
866        instances,
867        [axis[0].n, axis[1].n, axis[2].n],
868        center,
869        arc_degrees.map(|x| x.n),
870        rotate_duplicates,
871        use_original,
872        exec_state,
873        args,
874    )
875    .await?;
876    Ok(solids.into())
877}
878
879#[allow(clippy::too_many_arguments)]
880async fn inner_pattern_circular_3d(
881    solids: Vec<Solid>,
882    instances: u32,
883    axis: [f64; 3],
884    center: [TyF64; 3],
885    arc_degrees: Option<f64>,
886    rotate_duplicates: Option<bool>,
887    use_original: Option<bool>,
888    exec_state: &mut ExecState,
889    args: Args,
890) -> Result<Vec<Solid>, KclError> {
891    // Flush the batch for our fillets/chamfers if there are any.
892    // If we do not flush these, then you won't be able to pattern something with fillets.
893    // Flush just the fillets/chamfers that apply to these solids.
894    exec_state
895        .flush_batch_for_solids(ModelingCmdMeta::from_args(exec_state, &args), &solids)
896        .await?;
897
898    let starting_solids = solids;
899
900    if args.ctx.context_type == crate::execution::ContextType::Mock {
901        return Ok(starting_solids);
902    }
903
904    let mut solids = Vec::new();
905    let data = CircularPattern3dData {
906        instances,
907        axis,
908        center,
909        arc_degrees,
910        rotate_duplicates,
911        use_original,
912    };
913    for solid in starting_solids.iter() {
914        let geometries = pattern_circular(
915            CircularPattern::ThreeD(data.clone()),
916            Geometry::Solid(solid.clone()),
917            exec_state,
918            args.clone(),
919        )
920        .await?;
921
922        let Geometries::Solids(new_solids) = geometries else {
923            return Err(KclError::new_semantic(KclErrorDetails::new(
924                "Expected a vec of solids".to_string(),
925                vec![args.source_range],
926            )));
927        };
928
929        solids.extend(new_solids);
930    }
931
932    Ok(solids)
933}
934
935async fn pattern_circular(
936    data: CircularPattern,
937    geometry: Geometry,
938    exec_state: &mut ExecState,
939    args: Args,
940) -> Result<Geometries, KclError> {
941    let num_repetitions = match data.repetitions() {
942        RepetitionsNeeded::More(n) => n,
943        RepetitionsNeeded::None => {
944            return Ok(Geometries::from(geometry));
945        }
946        RepetitionsNeeded::Invalid => {
947            return Err(KclError::new_semantic(KclErrorDetails::new(
948                MUST_HAVE_ONE_INSTANCE.to_owned(),
949                vec![args.source_range],
950            )));
951        }
952    };
953
954    let center = data.center_mm();
955    let resp = exec_state
956        .send_modeling_cmd(
957            ModelingCmdMeta::from_args(exec_state, &args),
958            ModelingCmd::from(
959                mcmd::EntityCircularPattern::builder()
960                    .axis(kcmc::shared::Point3d::from(data.axis()))
961                    .entity_id(if data.use_original() {
962                        geometry.original_id()
963                    } else {
964                        geometry.id()
965                    })
966                    .center(kcmc::shared::Point3d {
967                        x: LengthUnit(center[0]),
968                        y: LengthUnit(center[1]),
969                        z: LengthUnit(center[2]),
970                    })
971                    .num_repetitions(num_repetitions)
972                    .arc_degrees(data.arc_degrees().unwrap_or(360.0))
973                    .rotate_duplicates(data.rotate_duplicates().unwrap_or(true))
974                    .build(),
975            ),
976        )
977        .await?;
978
979    // The common case is borrowing from the response.  Instead of cloning,
980    // create a Vec to borrow from in mock mode.
981    let mut mock_ids = Vec::new();
982    let entity_ids = if let OkWebSocketResponseData::Modeling {
983        modeling_response: OkModelingCmdResponse::EntityCircularPattern(pattern_info),
984    } = &resp
985    {
986        &pattern_info.entity_face_edge_ids.iter().map(|e| e.object_id).collect()
987    } else if args.ctx.no_engine_commands().await {
988        mock_ids.reserve(num_repetitions as usize);
989        for _ in 0..num_repetitions {
990            mock_ids.push(exec_state.next_uuid());
991        }
992        &mock_ids
993    } else {
994        return Err(KclError::new_engine(KclErrorDetails::new(
995            format!("EntityCircularPattern response was not as expected: {resp:?}"),
996            vec![args.source_range],
997        )));
998    };
999
1000    let geometries = match geometry {
1001        Geometry::Sketch(sketch) => {
1002            let mut geometries = vec![sketch.clone()];
1003            for id in entity_ids.iter().copied() {
1004                let mut new_sketch = sketch.clone();
1005                new_sketch.id = id;
1006                geometries.push(new_sketch);
1007            }
1008            Geometries::Sketches(geometries)
1009        }
1010        Geometry::Solid(solid) => {
1011            let mut geometries = vec![solid.clone()];
1012            for id in entity_ids.iter().copied() {
1013                let mut new_solid = solid.clone();
1014                new_solid.id = id;
1015                geometries.push(new_solid);
1016            }
1017            Geometries::Solids(geometries)
1018        }
1019    };
1020
1021    Ok(geometries)
1022}