use std::f64::consts::PI;
use crate::{
errors::{KclError, KclErrorDetails},
executor::{Point2d, SourceRange},
};
#[derive(Clone, Copy, Default, PartialOrd, PartialEq, Debug)]
pub struct Angle {
degrees: f64,
}
impl Angle {
const ZERO: Self = Self { degrees: 0.0 };
pub fn from_degrees(degrees: f64) -> Self {
Self { degrees }
}
pub fn from_radians(radians: f64) -> Self {
Self::from_degrees(radians.to_degrees())
}
pub fn degrees(&self) -> f64 {
self.degrees
}
pub fn radians(&self) -> f64 {
self.degrees.to_radians()
}
pub fn between(a: Point2d, b: Point2d) -> Self {
let x = b.x - a.x;
let y = b.y - a.y;
Self::from_radians(y.atan2(x)).normalize()
}
pub fn normalize(self) -> Self {
let angle = self.degrees();
let result = ((angle % 360.0) + 360.0) % 360.0;
Self::from_degrees(if result > 180.0 { result - 360.0 } else { result })
}
#[allow(dead_code)]
pub fn delta(from_angle: Self, to_angle: Self) -> Self {
let norm_from_angle = normalize_rad(from_angle.radians());
let norm_to_angle = normalize_rad(to_angle.radians());
let provisional = norm_to_angle - norm_from_angle;
if provisional > -PI && provisional <= PI {
return Angle::from_radians(provisional);
}
if provisional > PI {
return Angle::from_radians(provisional - 2.0 * PI);
}
if provisional < -PI {
return Angle::from_radians(provisional + 2.0 * PI);
}
Angle::ZERO
}
}
#[allow(dead_code)]
pub fn clockwise_sign(points: &[Point2d]) -> i32 {
let mut sum = 0.0;
for i in 0..points.len() {
let current_point = points[i];
let next_point = points[(i + 1) % points.len()];
sum += (next_point.x - current_point.x) * (next_point.y + current_point.y);
}
if sum >= 0.0 {
1
} else {
-1
}
}
#[allow(dead_code)]
pub fn normalize_rad(angle: f64) -> f64 {
let draft = angle % (2.0 * PI);
if draft < 0.0 {
draft + 2.0 * PI
} else {
draft
}
}
#[allow(dead_code)]
pub fn distance_between_points(point_a: Point2d, point_b: Point2d) -> f64 {
let x1 = point_a.x;
let y1 = point_a.y;
let x2 = point_b.x;
let y2 = point_b.y;
((y2 - y1).powi(2) + (x2 - x1).powi(2)).sqrt()
}
pub fn calculate_intersection_of_two_lines(line1: &[Point2d; 2], line2_angle: f64, line2_point: Point2d) -> Point2d {
let line2_point_b = Point2d {
x: line2_point.x + f64::cos(line2_angle.to_radians()) * 10.0,
y: line2_point.y + f64::sin(line2_angle.to_radians()) * 10.0,
};
intersect(line1[0], line1[1], line2_point, line2_point_b)
}
pub fn intersect(p1: Point2d, p2: Point2d, p3: Point2d, p4: Point2d) -> Point2d {
let slope = |p1: Point2d, p2: Point2d| (p1.y - p2.y) / (p1.x - p2.x);
let constant = |p1: Point2d, p2: Point2d| p1.y - slope(p1, p2) * p1.x;
let get_y = |for_x: f64, p1: Point2d, p2: Point2d| slope(p1, p2) * for_x + constant(p1, p2);
if p1.x == p2.x {
return Point2d {
x: p1.x,
y: get_y(p1.x, p3, p4),
};
}
if p3.x == p4.x {
return Point2d {
x: p3.x,
y: get_y(p3.x, p1, p2),
};
}
let x = (constant(p3, p4) - constant(p1, p2)) / (slope(p1, p2) - slope(p3, p4));
let y = get_y(x, p1, p2);
Point2d { x, y }
}
pub fn intersection_with_parallel_line(
line1: &[Point2d; 2],
line1_offset: f64,
line2_angle: f64,
line2_point: Point2d,
) -> Point2d {
calculate_intersection_of_two_lines(&offset_line(line1_offset, line1[0], line1[1]), line2_angle, line2_point)
}
fn offset_line(offset: f64, p1: Point2d, p2: Point2d) -> [Point2d; 2] {
if p1.x == p2.x {
let direction = (p1.y - p2.y).signum();
return [
Point2d {
x: p1.x + offset * direction,
y: p1.y,
},
Point2d {
x: p2.x + offset * direction,
y: p2.y,
},
];
}
if p1.y == p2.y {
let direction = (p2.x - p1.x).signum();
return [
Point2d {
x: p1.x,
y: p1.y + offset * direction,
},
Point2d {
x: p2.x,
y: p2.y + offset * direction,
},
];
}
let x_offset = offset / f64::sin(f64::atan2(p1.y - p2.y, p1.x - p2.x));
[
Point2d {
x: p1.x + x_offset,
y: p1.y,
},
Point2d {
x: p2.x + x_offset,
y: p2.y,
},
]
}
pub fn get_y_component(angle: Angle, x: f64) -> Point2d {
let normalised_angle = ((angle.degrees() % 360.0) + 360.0) % 360.0; let y = x * f64::tan(normalised_angle.to_radians());
let sign = if normalised_angle > 90.0 && normalised_angle <= 270.0 {
-1.0
} else {
1.0
};
Point2d { x, y }.scale(sign)
}
pub fn get_x_component(angle: Angle, y: f64) -> Point2d {
let normalised_angle = ((angle.degrees() % 360.0) + 360.0) % 360.0; let x = y / f64::tan(normalised_angle.to_radians());
let sign = if normalised_angle > 180.0 && normalised_angle <= 360.0 {
-1.0
} else {
1.0
};
Point2d { x, y }.scale(sign)
}
pub fn arc_center_and_end(from: Point2d, start_angle: Angle, end_angle: Angle, radius: f64) -> (Point2d, Point2d) {
let start_angle = start_angle.radians();
let end_angle = end_angle.radians();
let center = Point2d {
x: -1.0 * (radius * start_angle.cos() - from.x),
y: -1.0 * (radius * start_angle.sin() - from.y),
};
let end = Point2d {
x: center.x + radius * end_angle.cos(),
y: center.y + radius * end_angle.sin(),
};
(center, end)
}
pub fn arc_angles(
from: Point2d,
to: Point2d,
center: Point2d,
radius: f64,
source_range: SourceRange,
) -> Result<(Angle, Angle), KclError> {
if !is_on_circumference(center, from, radius) {
return Err(KclError::Semantic(KclErrorDetails {
message: format!(
"Point {:?} is not on the circumference of the circle with center {:?} and radius {}.",
from, center, radius
),
source_ranges: vec![source_range],
}));
}
if !is_on_circumference(center, to, radius) {
return Err(KclError::Semantic(KclErrorDetails {
message: format!(
"Point {:?} is not on the circumference of the circle with center {:?} and radius {}.",
to, center, radius
),
source_ranges: vec![source_range],
}));
}
let start_angle = (from.y - center.y).atan2(from.x - center.x);
let end_angle = (to.y - center.y).atan2(to.x - center.x);
Ok((Angle::from_radians(start_angle), Angle::from_radians(end_angle)))
}
pub fn is_on_circumference(center: Point2d, point: Point2d, radius: f64) -> bool {
let dx = point.x - center.x;
let dy = point.y - center.y;
let distance_squared = dx.powi(2) + dy.powi(2);
(distance_squared - radius.powi(2)).abs() < 1e-9
}
#[cfg(test)]
mod tests {
use pretty_assertions::assert_eq;
use super::{get_x_component, get_y_component, Angle};
use crate::executor::SourceRange;
static EACH_QUAD: [(i32, [i32; 2]); 12] = [
(-315, [1, 1]),
(-225, [-1, 1]),
(-135, [-1, -1]),
(-45, [1, -1]),
(45, [1, 1]),
(135, [-1, 1]),
(225, [-1, -1]),
(315, [1, -1]),
(405, [1, 1]),
(495, [-1, 1]),
(585, [-1, -1]),
(675, [1, -1]),
];
#[test]
fn test_get_y_component() {
let mut expected = Vec::new();
let mut results = Vec::new();
for &(angle, expected_result) in EACH_QUAD.iter() {
let res = get_y_component(Angle::from_degrees(angle as f64), 1.0);
results.push([res.x.round() as i32, res.y.round() as i32]);
expected.push(expected_result);
}
assert_eq!(results, expected);
let result = get_y_component(Angle::ZERO, 1.0);
assert_eq!(result.x as i32, 1);
assert_eq!(result.y as i32, 0);
let result = get_y_component(Angle::from_degrees(90.0), 1.0);
assert_eq!(result.x as i32, 1);
assert!(result.y > 100000.0);
let result = get_y_component(Angle::from_degrees(180.0), 1.0);
assert_eq!(result.x as i32, -1);
assert!((result.y - 0.0).abs() < f64::EPSILON);
let result = get_y_component(Angle::from_degrees(270.0), 1.0);
assert_eq!(result.x as i32, -1);
assert!(result.y < -100000.0);
}
#[test]
fn test_get_x_component() {
let mut expected = Vec::new();
let mut results = Vec::new();
for &(angle, expected_result) in EACH_QUAD.iter() {
let res = get_x_component(Angle::from_degrees(angle as f64), 1.0);
results.push([res.x.round() as i32, res.y.round() as i32]);
expected.push(expected_result);
}
assert_eq!(results, expected);
let result = get_x_component(Angle::ZERO, 1.0);
assert!(result.x > 100000.0);
assert_eq!(result.y as i32, 1);
let result = get_x_component(Angle::from_degrees(90.0), 1.0);
assert!((result.x - 0.0).abs() < f64::EPSILON);
assert_eq!(result.y as i32, 1);
let result = get_x_component(Angle::from_degrees(180.0), 1.0);
assert!(result.x < -100000.0);
assert_eq!(result.y as i32, 1);
let result = get_x_component(Angle::from_degrees(270.0), 1.0);
assert!((result.x - 0.0).abs() < f64::EPSILON);
assert_eq!(result.y as i32, -1);
}
#[test]
fn test_arc_center_and_end() {
let (center, end) = super::arc_center_and_end(
super::Point2d { x: 0.0, y: 0.0 },
Angle::ZERO,
Angle::from_degrees(90.0),
1.0,
);
assert_eq!(center.x.round(), -1.0);
assert_eq!(center.y, 0.0);
assert_eq!(end.x.round(), -1.0);
assert_eq!(end.y, 1.0);
let (center, end) = super::arc_center_and_end(
super::Point2d { x: 0.0, y: 0.0 },
Angle::ZERO,
Angle::from_degrees(180.0),
1.0,
);
assert_eq!(center.x.round(), -1.0);
assert_eq!(center.y, 0.0);
assert_eq!(end.x.round(), -2.0);
assert_eq!(end.y.round(), 0.0);
let (center, end) = super::arc_center_and_end(
super::Point2d { x: 0.0, y: 0.0 },
Angle::ZERO,
Angle::from_degrees(180.0),
10.0,
);
assert_eq!(center.x.round(), -10.0);
assert_eq!(center.y, 0.0);
assert_eq!(end.x.round(), -20.0);
assert_eq!(end.y.round(), 0.0);
}
#[test]
fn test_arc_angles() {
let (angle_start, angle_end) = super::arc_angles(
super::Point2d { x: 0.0, y: 0.0 },
super::Point2d { x: -1.0, y: 1.0 },
super::Point2d { x: -1.0, y: 0.0 },
1.0,
SourceRange(Default::default()),
)
.unwrap();
assert_eq!(angle_start.degrees().round(), 0.0);
assert_eq!(angle_end.degrees().round(), 90.0);
let (angle_start, angle_end) = super::arc_angles(
super::Point2d { x: 0.0, y: 0.0 },
super::Point2d { x: -2.0, y: 0.0 },
super::Point2d { x: -1.0, y: 0.0 },
1.0,
SourceRange(Default::default()),
)
.unwrap();
assert_eq!(angle_start.degrees().round(), 0.0);
assert_eq!(angle_end.degrees().round(), 180.0);
let (angle_start, angle_end) = super::arc_angles(
super::Point2d { x: 0.0, y: 0.0 },
super::Point2d { x: -20.0, y: 0.0 },
super::Point2d { x: -10.0, y: 0.0 },
10.0,
SourceRange(Default::default()),
)
.unwrap();
assert_eq!(angle_start.degrees().round(), 0.0);
assert_eq!(angle_end.degrees().round(), 180.0);
let result = super::arc_angles(
super::Point2d { x: 0.0, y: 5.0 },
super::Point2d { x: 5.0, y: 5.0 },
super::Point2d { x: 10.0, y: -10.0 },
10.0,
SourceRange(Default::default()),
);
if let Err(err) = result {
assert!(err.to_string().contains( "Point Point2d { x: 0.0, y: 5.0 } is not on the circumference of the circle with center Point2d { x: 10.0, y: -10.0 } and radius 10."));
} else {
panic!("Expected error");
}
assert_eq!(angle_start.degrees().round(), 0.0);
assert_eq!(angle_end.degrees().round(), 180.0);
}
}