1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/*!
# KBNF
This crate provides a constrained decoding engine
which ensures that a language model's output adheres strictly to the format defined by KBNF (Koishi's BNF), an enhanced variant of EBNF.
KBNF includes features that enhance usability, notably embeddable regular expressions and more flexible exceptions.
Here is a quick example of how this crate works:
```rust
fn greedy_decode(logits: &[f32])->u32 {
logits.iter().enumerate().max_by(|a,b|a.1.partial_cmp(b.1).unwrap()).unwrap().0 as u32
}
use ahash::AHashMap;
use kbnf::{Engine, EngineLike, Grammar, Token, Vocabulary};
let grammar_str = r#"
start ::= "你好"except!('\n\n')'\n\n';
"#;
let mut token_strings: AHashMap<u32, String> = AHashMap::default();
token_strings.extend(
[
(1, "你好".to_string()),
(2, "hello".to_string()),
(3, "250".to_string()),
(4, "\n".to_string()),
(5, "\n\n".to_string()),
]
);
let mut tokens = token_strings
.iter()
.map(|(k, v)| (*k, Token(v.as_bytes().to_vec().into_boxed_slice())))
.collect::<AHashMap<u32, _>>();
tokens.insert(3,Token(Box::new([250])));
let vocab = Vocabulary::new(tokens, token_strings).unwrap();
let mut engine = Engine::new(grammar_str, vocab).unwrap();
let mut token = 1; // the prompt token
let mut logits = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]; // logits obtained from the language model
assert_eq!(
engine.update_logits(token, &mut logits).unwrap(),
kbnf::AcceptTokenResult::Ongoing
);
assert_eq!(&format!("{:?}", logits), "[-inf, 0.0, 0.0, 1.0, 0.0, 0.0]");
token = greedy_decode(&logits);
logits = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]; // new logits obtained from the language model
assert_eq!(
engine.update_logits(token, &mut logits).unwrap(),
kbnf::AcceptTokenResult::Ongoing
);
assert_eq!(&format!("{:?}", logits), "[-inf, 0.0, 0.0, 0.0, 1.0, 0.0]");
token = greedy_decode(&logits);
logits = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]; // new logits obtained from the language model
assert_eq!(
engine.update_logits(token, &mut logits).unwrap(),
kbnf::AcceptTokenResult::Ongoing
);
assert_eq!(
&format!("{:?}", logits),
"[-inf, 1.0, 0.0, 0.0, 0.0, -inf]"
);
token = greedy_decode(&logits);
logits = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]; // new logits obtained from the language model
assert_eq!(
engine.update_logits(token, &mut logits).unwrap(),
kbnf::AcceptTokenResult::Ongoing
);
assert_eq!(&format!("{:?}", logits), "[-inf, 0.0, 0.0, 0.0, 0.0, 1.0]");
token = greedy_decode(&logits);
logits = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]; // new logits obtained from the language model
assert_eq!(
engine.update_logits(token, &mut logits).unwrap(),
kbnf::AcceptTokenResult::Finished
);
assert_eq!(&format!("{:?}", logits), "[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]");
// Currently, if the engine finishes, it will not update the logits.
```
# Overview
The primary type in this crate are [EngineLike] and [Engine]. [EngineLike] defines the behavior of an engine,
while [Engine] is a concrete implementation of [EngineLike]. The most important method in [Engine] are as follows:
- [Engine::new]: This method creates a new engine from a [KBNF grammar](#kbnf-grammar) string, a [Vocabulary] and default configuration.
[Engine::with_config] allows you to specify a custom configuration.
- [Engine::update_logits]: This method tries to accept a new token and then updates the logits accordingly.
- [Engine::reset]: This method resets the engine to its initial state. Notably, the cache is preserved.
This crate-level documentation is organized as follows:
- [Examples](#examples): This section contains some examples of how to use the crate.
- [KBNF Grammar](#kbnf-grammar): This section enumerates the syntax of KBNF grammar.
- [Performance](#performance): This section discusses how to optimize the performance of the engine.
# Examples
## Get initially allowed token IDs
```rust
use ahash::AHashMap;
use kbnf::{Engine, EngineLike, Grammar, Token, Vocabulary};
let grammar_str = r#"
start ::= except!('\n\n')'\n\n';
"#;
let mut token_strings: AHashMap<u32, String> = AHashMap::default();
token_strings.extend(
[
(1, "a".to_string()),
(2, "hello".to_string()),
(4, "\n".to_string()),
(5, "\n\n".to_string()),
]
);
let tokens = token_strings
.iter()
.map(|(k, v)| (*k, Token(v.as_bytes().to_vec().into_boxed_slice())))
.collect::<AHashMap<u32, _>>();
let vocab = Vocabulary::new(tokens, token_strings).unwrap();
let mut engine = Engine::new(grammar_str, vocab).unwrap();
let mut logits = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]; // The logits of the language model
engine.compute_allowed_token_ids();
assert_eq!(
engine
.allowed_token_ids_from_last_computation()
.ones()
.collect::<Vec<_>>(),
vec![1, 2, 4, 5]
);
engine.mask_logits(&mut logits).unwrap(); // mask the logits
assert_eq!(&format!("{:?}", logits), "[-inf, 0.0, 0.0, -inf, 0.0, 0.0]");
```
## Update engine's state with some prompts
```rust
use ahash::AHashMap;
use kbnf::{Engine, EngineLike, Grammar, Token, Vocabulary};
let grammar_str = r#"
start ::= except!('\n\n')'\n\n';
"#;
let mut token_strings: AHashMap<u32, String> = AHashMap::default();
token_strings.extend(
[
(1, "a".to_string()),
(2, "hello".to_string()),
(4, "\n".to_string()),
(5, "\n\n".to_string()),
],
);
let tokens = token_strings
.iter()
.map(|(k, v)| (*k, Token(v.as_bytes().to_vec().into_boxed_slice())))
.collect::<AHashMap<u32, _>>();
let vocab = Vocabulary::new(tokens, token_strings).unwrap();
let mut engine = Engine::new(grammar_str, vocab).unwrap();
let mut logits = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]; // The logits of the language model
engine.try_accept_new_token(2).unwrap();
engine.try_accept_new_token(2).unwrap();
engine.compute_allowed_token_ids();
assert_eq!(
engine
.allowed_token_ids_from_last_computation()
.ones()
.collect::<Vec<_>>(),
vec![1, 2, 4, 5]
); // get the IDs
engine.mask_logits(&mut logits).unwrap(); // mask the logits
assert_eq!(&format!("{:?}", logits), "[-inf, 0.0, 0.0, -inf, 0.0, 0.0]");
```
## Reuse an engine for multiple generations
```rust
use ahash::AHashMap;
use kbnf::{Engine, EngineLike, Grammar, Token, Vocabulary};
let grammar_str = r#"
start ::= except!('\n\n')'\n\n';
"#;
let mut token_strings: AHashMap<u32, String> = AHashMap::default();
token_strings.extend(
[
(1, "a".to_string()),
(2, "hello".to_string()),
(4, "\n".to_string()),
(5, "\n\n".to_string()),
],
);
let tokens = token_strings
.iter()
.map(|(k, v)| (*k, Token(v.as_bytes().to_vec().into_boxed_slice())))
.collect::<AHashMap<u32, _>>();
let vocab = Vocabulary::new(tokens, token_strings).unwrap();
let mut engine = Engine::new(grammar_str, vocab).unwrap();
let mut logits = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]; // The logits of the language model
engine.try_accept_new_token(2).unwrap();
engine.try_accept_new_token(5).unwrap();
engine.compute_allowed_token_ids();
assert_eq!(
engine
.allowed_token_ids_from_last_computation()
.ones()
.collect::<Vec<usize>>(),
Vec::<usize>::new()
);
engine.reset();
assert_eq!(
engine.update_logits(2, &mut logits).unwrap(),
kbnf::AcceptTokenResult::Ongoing
);
assert_eq!(&format!("{:?}", logits), "[-inf, 0.0, 0.0, -inf, 0.0, 0.0]");
```
# KBNF Grammar
KBNF is roughly a superset of [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form). The syntax of KBNF is as follows:
## An informal, quick introduction to terms
- **Terminal**: Terminal is a fancy name for plain, old strings.
- **Nonterminal**: Nonterminal means a symbol that expands into sequences of other symbols.
## Nonterminal definition
Any KBNF grammar is made of nonterminal definitions. **By default, the engine starts from the definition of the nonterminal `start`**.
```ebnf
(*In KBNF,this is a comment.*)
start ::= "A"; (* Defines a nonterminal start that corresponds to a terminal "A". *)
(*The engine will constrain output to be exactly "A".*)
```
A nonterminal can be defined multiple times.
```ebnf
start ::= "A";
start ::= "B";
(*This means nonterminal start can either expand to "A" or "B".
Hence, the engine will constrain the output to be either "A" or "B".*)
```
A nonterminal identifier can contain any number of underscores, ASCII numerical and alphabetic characters.
It cannot start with a numerical character however.
## Terminal
A terminal is a sequence of UTF-8 characters enclosed in double quotes or single quotes.
Currently, these escaped characters are supported:
| Escape sequence | Escaped value |
|-----------------|--------------------------|
| `\t` | U+0009 (HT) |
| `\n` | U+000A (LF) |
| `\r` | U+000D (CR) |
| `\"` | U+0022 (QUOTATION MARK) |
| `\'` | U+0027 (APOSTROPHE) |
| `\\` | U+005C (REVERSE SOLIDUS) |
More escaped characters will be added in the future.
## Concatenation
Two or more symbols in a sequence are concatenated.
```ebnf
start ::= "A" "B"; (* Equivalent to start ::= "AB". *)
```
```ebnf
start ::= "A" start;
(*
The expansion: start -> "A" start -> "A" "A" start -> "A" "A" "A" start -> ...
Hence, the engine will constrain the output to be an infinite sequence of "A"s.
*)
```
## Alternation
Concatenated symbols separated by `|` are alternatives to each other.
```ebnf
start ::= "A" | "B";
(*
The engine will constrain the output to be either "A" or "B".
This is equivalent to:
start ::= "A";
start ::= "B";
*)
```
```ebnf
start ::= "A" start | "B" start;
(*
The engine will constrain the output to be an infinite sequence
that only contains "A" and "B".
*)
```
## Grouping
Symbols enclosed in parentheses are grouped.
```ebnf
start ::= ("A"|"B") "C";
(*
The engine will constrain the output to be either "AC" or "BC".
This is equivalent to:
start ::= "A" "C";
start ::= "B" "C";
*)
```
## Option
Symbols enclosed in square brackets are optional.
```ebnf
start ::= "A" ["B"];
(*
The engine will constrain the output to be either "A" or "AB".
This is equivalent to:
start ::= "A";
start ::= "A" "B";
*)
```
A symbol followed by a `?` is optional.
```ebnf
start ::= "A"? "B";
(*
The engine will constrain the output to be either "B" or "AB".
*)
```
```ebnf
start ::= ("{"start"}")?;
(*
The engine will constrain the output to be a sequence of balanced curly brackets.
*)
```
**NOTE THAT KBNF does not allow the grammar to finish with an empty string.**
Otherwise, the engine will finish immediately, which does not make sense.
## Repetition
Symbols enclosed in curly brackets can be repeated zero or more times.
```ebnf
start ::= "A"{"A"};
```
**NOTE THAT KBNF ends eagerly, so the engine will constrain the output to be exactly one "A".**
```ebnf
start ::= {"A"|"C"} "B";
(*The engine will constrain the output to a sequence
of "A"s and "C"s followed by exactly one "B".*)
```
A symbol followed by a `*` can be repeated zero or more times.
```ebnf
start ::= "A"* "B"; (*The engine will constrain the output to
a sequence of "A"s followed by exactly one "B".*)
```
A symbol followed by a `+` can be repeated one or more times.
```kbnf_syntax
start ::= ("A"|"B")+ "C";
(*The engine will constrain the output to
a nonempty sequence of "A"s and "B"s followed by exactly one "C".*)
```
## Regular expression
A UTF-8 string enclosed in `#""` is a regular expression. The escaped characters supported is the same as [Terminal](##terminal).
```ebnf
start ::= #".+A";
(*
The engine will constrain the output to be
a sequence of any characters followed by exactly one A.
This is equivalent to:
start ::= #".+" "A";
*)
```
The Rust regex crate is used to support regular expressions,
which means [the syntax supported](https://docs.rs/regex/latest/regex/index.html#syntax) might differ from other regex engines.
Notably, the regex crate does not support arbitrary lookarounds. In exchange, linear time matching is guaranteed.
**WARNING: the regular expression is compiled into a DFA which, by its nature, has worst case exponential time and space complexity.**
If you are dealing with untrusted regular expressions,
you should set a memory limit in [Config::regex_config] to prevent DoS attacks.
## Exceptions/except!
Although exception is the formal term, I personally find it confusing, so I will refer to it as "except!".
The `except!` keyword is used to exclude certain strings from the output.
```ebnf
start ::= except!('\n\n')'\n\n';
(*
The engine will constrain the output to be a sequence of characters
that does not contain "\n\n" followed by exactly one "\n\n".
*)
```
**NOTE THAT THE DEFINITION ABOVE DOES ALLOW `\n\n\n`!**
The first `\n` comes from the exception(since `\n != \n\n`), and the second `\n\n` comes from the terminal.
If you want a string that strictly ends with `\n\n`, you should use the following definition:
```ebnf
start ::= #".*\n\n";
```
You can use a nonterminal that directly contains alternations of terminals in `except!`.
```ebnf
start ::= except!(C)C;
C ::= "A"|"B";
(*The engine will constrain the output to be
a sequence of characters that ends with "A" or "B". *)
```
You can also specify the maximum repetition of `except!`.
```ebnf
start ::= except!('\n\n',50)'\n\n';
(*The engine will constrain the output
to be a sequence of bytes of maximum length 50
that does not contain "\n\n" followed by exactly one "\n\n".*)
```
# Performance
## Reducing ambuguity
Grammar structure is the most influential factor in the performance of the engine **asymptotically**.
Practically speaking, if your engine runs abymally slow for long inputs, you should check the grammar
for [ambiguity](https://en.wikipedia.org/wiki/Ambiguous_grammar). Unfortunately, determining ambiguity is undecidable.
There does exist some heuristics to detect ambiguity like
[Shift-Reduce Conflict](https://www.gnu.org/software/bison/manual/html_node/Shift_002fReduce.html) and
[Reduce-Reduce Conflict](https://www.gnu.org/software/bison/manual/html_node/Reduce_002fReduce.html#:~:text=A%20reduce/reduce%20conflict%20occurs,zero%20or%20more%20word%20groupings).
They may be implemented in this crate in the future. Some locally disambiguation methods may be implemented in the future as well.
## Reuse an engine for multiple generations with cache enabled
Caches are preserved between [Engine::reset] calls.
Hence, if your grammar and vocabulary are fixed, you should reuse the engine for multiple generations,
so when the engine hits the same state, it can directly fetch the allowed token IDs from the cache without recomputation.
## Prefer regular expressions over context-free grammars
Regular expressions are compiled into a DFA, which has lower overhead than Earley recognizer.
## Prefer left recursion over right recursion
While Leo optimization ensures both left and right recursion have linear time complexity,
it still introduces a constant factor overhead.
*/
#![warn(missing_docs)]
#![warn(rustdoc::broken_intra_doc_links)]
pub mod config;
pub mod engine;
pub mod engine_base;
pub mod engine_like;
mod ffi_bindings;
pub mod grammar;
pub mod utils;
pub mod vocabulary;
mod zero;
pub use config::Config;
pub use engine::Engine;
pub use engine_like::AcceptTokenResult;
pub use engine_like::EngineLike;
pub use grammar::Grammar;
#[cfg(feature = "python")]
use pyo3::prelude::*;
#[cfg(feature = "mimalloc")]
use mimalloc::MiMalloc;
pub use vocabulary::Token;
pub use vocabulary::Vocabulary;
#[cfg(feature = "mimalloc")]
#[global_allocator]
static GLOBAL: MiMalloc = MiMalloc;
#[cfg(feature = "python")]
#[pymodule]
#[pyo3(name = "kbnf")]
fn kbnf(m: &Bound<'_, PyModule>) -> PyResult<()> {
pyo3_log::init();
m.add_class::<Config>()?;
m.add_class::<config::CompressionConfig>()?;
m.add_class::<config::Fsa>()?;
m.add_class::<config::RegexConfig>()?;
m.add_class::<engine::EngineConfig>()?;
m.add_class::<Engine>()?;
m.add_class::<AcceptTokenResult>()?;
m.add_class::<engine_like::AcceptTokenError>()?;
m.add_class::<engine_like::MaskLogitsError>()?;
m.add_class::<engine_like::UpdateLogitsError>()?;
m.add_class::<Vocabulary>()?;
m.add_class::<Token>()?;
Ok(())
}