1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
use indexmap::IndexMap;
use kaspa_utils::mem_size::{MemMode, MemSizeEstimator};
use parking_lot::RwLock;
use rand::Rng;
use std::{collections::hash_map::RandomState, hash::BuildHasher, sync::Arc};

#[derive(Debug, Clone, Copy)]
pub enum CachePolicy {
    /// An empty cache (avoids acquiring locks etc so considered perf-free)
    Empty,
    /// The cache bounds the number of items it holds w/o tracking their inner size
    Count(usize),
    /// Items are tracked by size with a `max_size` limit overall. The cache will pass this limit
    /// if there are no more than `min_items` items in the cache. `mem_mode` determines whether
    /// items are tracked by bytes or by units
    Tracked { max_size: usize, min_items: usize, mem_mode: MemMode },
}

#[derive(Clone)]
struct CachePolicyInner {
    /// Indicates if this cache was set to be tracked.
    tracked: bool,
    /// The max size of this cache. Size units are bytes or a logical unit depending on `mem_mode`.
    /// The implementation of `MemSizeEstimator` is expected to support the provided mode.
    max_size: usize,
    /// Minimum number of items to keep in the cache even if passing tracked size limit.
    min_items: usize,
    /// Indicates whether tracking is in bytes mode, units mode or undefined
    mem_mode: MemMode,
}

impl From<CachePolicy> for CachePolicyInner {
    fn from(policy: CachePolicy) -> Self {
        match policy {
            CachePolicy::Empty => CachePolicyInner { tracked: false, max_size: 0, min_items: 0, mem_mode: MemMode::Undefined },
            CachePolicy::Count(max_size) => CachePolicyInner { tracked: false, max_size, min_items: 0, mem_mode: MemMode::Undefined },
            CachePolicy::Tracked { max_size, min_items, mem_mode } => {
                CachePolicyInner { tracked: true, max_size, min_items, mem_mode }
            }
        }
    }
}

struct Inner<TKey, TData, S = RandomState>
where
    TKey: Clone + std::hash::Hash + Eq + Send + Sync,
    TData: Clone + Send + Sync + MemSizeEstimator,
{
    // We use IndexMap and not HashMap because it makes it cheaper to remove a random element when the cache is full.
    map: IndexMap<TKey, TData, S>,
    tracked_size: usize,
}

impl<TKey, TData, S> Inner<TKey, TData, S>
where
    TKey: Clone + std::hash::Hash + Eq + Send + Sync,
    TData: Clone + Send + Sync + MemSizeEstimator,
    S: BuildHasher + Default,
{
    /// Evicts items until meeting cache policy requirements (in tracked mode)
    fn tracked_evict(&mut self, policy: &CachePolicyInner) {
        // We allow passing tracked size limit as long as there are no more than min_items items
        while self.tracked_size > policy.max_size && self.map.len() > policy.min_items {
            if let Some((_, v)) = self.map.swap_remove_index(rand::thread_rng().gen_range(0..self.map.len())) {
                self.tracked_size -= v.estimate_size(policy.mem_mode)
            }
        }
    }

    fn insert(&mut self, policy: &CachePolicyInner, key: TKey, data: TData) {
        if policy.tracked {
            let new_data_size = data.estimate_size(policy.mem_mode);
            self.tracked_size += new_data_size;
            if let Some(removed) = self.map.insert(key, data) {
                self.tracked_size -= removed.estimate_size(policy.mem_mode);
            }
            self.tracked_evict(policy);
        } else {
            if self.map.len() == policy.max_size {
                self.map.swap_remove_index(rand::thread_rng().gen_range(0..policy.max_size));
            }
            self.map.insert(key, data);
        }
    }

    fn update_if_entry_exists<F>(&mut self, policy: &CachePolicyInner, key: TKey, op: F)
    where
        F: Fn(&mut TData),
    {
        if let Some(data) = self.map.get_mut(&key) {
            if policy.tracked {
                self.tracked_size -= data.estimate_size(policy.mem_mode);
                op(data);
                self.tracked_size += data.estimate_size(policy.mem_mode);
                self.tracked_evict(policy);
            } else {
                op(data);
            }
        }
    }

    fn remove(&mut self, policy: &CachePolicyInner, key: &TKey) -> Option<TData> {
        match self.map.swap_remove(key) {
            Some(data) => {
                if policy.tracked {
                    self.tracked_size -= data.estimate_size(policy.mem_mode);
                }
                Some(data)
            }
            None => None,
        }
    }
}

impl<TKey, TData, S> Inner<TKey, TData, S>
where
    TKey: Clone + std::hash::Hash + Eq + Send + Sync,
    TData: Clone + Send + Sync + MemSizeEstimator,
    S: BuildHasher + Default,
{
    pub fn new(prealloc_size: usize) -> Self {
        Self { map: IndexMap::with_capacity_and_hasher(prealloc_size, S::default()), tracked_size: 0 }
    }
}

#[derive(Clone)]
pub struct Cache<TKey, TData, S = RandomState>
where
    TKey: Clone + std::hash::Hash + Eq + Send + Sync,
    TData: Clone + Send + Sync + MemSizeEstimator,
{
    inner: Arc<RwLock<Inner<TKey, TData, S>>>,
    policy: CachePolicyInner,
}

impl<TKey, TData, S> Cache<TKey, TData, S>
where
    TKey: Clone + std::hash::Hash + Eq + Send + Sync,
    TData: Clone + Send + Sync + MemSizeEstimator,
    S: BuildHasher + Default,
{
    pub fn new(policy: CachePolicy) -> Self {
        let policy: CachePolicyInner = policy.into();
        let prealloc_size = if policy.tracked { 0 } else { policy.max_size }; // TODO: estimate prealloc also in tracked mode
        Self { inner: Arc::new(RwLock::new(Inner::new(prealloc_size))), policy }
    }

    pub fn get(&self, key: &TKey) -> Option<TData> {
        self.inner.read().map.get(key).cloned()
    }

    pub fn contains_key(&self, key: &TKey) -> bool {
        self.inner.read().map.contains_key(key)
    }

    pub fn insert(&self, key: TKey, data: TData) {
        if self.policy.max_size == 0 {
            return;
        }

        self.inner.write().insert(&self.policy, key, data);
    }

    pub fn insert_many(&self, iter: &mut impl Iterator<Item = (TKey, TData)>) {
        if self.policy.max_size == 0 {
            return;
        }
        let mut inner = self.inner.write();
        for (key, data) in iter {
            inner.insert(&self.policy, key, data);
        }
    }

    pub fn update_if_entry_exists<F>(&self, key: TKey, op: F)
    where
        F: Fn(&mut TData),
    {
        if self.policy.max_size == 0 {
            return;
        }
        self.inner.write().update_if_entry_exists(&self.policy, key, op);
    }

    pub fn remove(&self, key: &TKey) -> Option<TData> {
        if self.policy.max_size == 0 {
            return None;
        }
        self.inner.write().remove(&self.policy, key)
    }

    pub fn remove_many(&self, key_iter: &mut impl Iterator<Item = TKey>) {
        if self.policy.max_size == 0 {
            return;
        }
        let mut inner = self.inner.write();
        for key in key_iter {
            inner.remove(&self.policy, &key);
        }
    }

    pub fn remove_all(&self) {
        if self.policy.max_size == 0 {
            return;
        }
        let mut inner = self.inner.write();
        inner.map.clear();
        if self.policy.tracked {
            inner.tracked_size = 0;
        }
    }
}