kas_core/layout/sizer.rs
1// Licensed under the Apache License, Version 2.0 (the "License");
2// you may not use this file except in compliance with the License.
3// You may obtain a copy of the License in the LICENSE-APACHE file or at:
4// https://www.apache.org/licenses/LICENSE-2.0
5
6//! Layout solver
7
8use super::{AxisInfo, Margins, SizeRules};
9use crate::cast::Conv;
10use crate::event::ConfigCx;
11use crate::geom::{Rect, Size};
12use crate::layout::AlignHints;
13use crate::theme::SizeCx;
14use crate::util::WidgetHierarchy;
15use crate::{Layout, Node};
16
17/// A [`SizeRules`] solver for layouts
18///
19/// Typically, a solver is invoked twice, once for each axis, before the
20/// corresponding [`RulesSetter`] is invoked. This is managed by [`SolveCache`].
21///
22/// Implementations require access to storage able to persist between multiple
23/// solver runs and a subsequent setter run. This storage is of type
24/// [`RulesSolver::Storage`] and is passed via reference to the constructor.
25pub trait RulesSolver {
26 /// Type of storage
27 type Storage: Clone;
28
29 /// Type required by [`RulesSolver::for_child`] (see implementation documentation)
30 type ChildInfo;
31
32 /// Called once for each child. For most layouts the order is important.
33 fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
34 &mut self,
35 storage: &mut Self::Storage,
36 child_info: Self::ChildInfo,
37 child_rules: CR,
38 );
39
40 /// Called at the end to output [`SizeRules`].
41 ///
42 /// Note that this does not include margins!
43 fn finish(self, storage: &mut Self::Storage) -> SizeRules;
44}
45
46/// Resolves a [`RulesSolver`] solution for each child
47pub trait RulesSetter {
48 /// Type of storage
49 type Storage: Clone;
50
51 /// Type required by [`RulesSolver::for_child`] (see implementation documentation)
52 type ChildInfo;
53
54 /// Called once for each child. The order is unimportant.
55 fn child_rect(&mut self, storage: &mut Self::Storage, child_info: Self::ChildInfo) -> Rect;
56
57 /// Calculates the maximal rect of a given child
58 ///
59 /// This assumes that all other entries have minimum size.
60 fn maximal_rect_of(&mut self, storage: &mut Self::Storage, index: Self::ChildInfo) -> Rect;
61}
62
63/// Solve size rules for a widget
64///
65/// Automatic layout solving requires that a widget's `size_rules` method is
66/// called for each axis before `set_rect`. This method simply calls
67/// `size_rules` on each axis.
68///
69/// If `size_rules` is not called, internal layout may be poor (depending on the
70/// widget). If widget content changes, it is recommended to call
71/// `solve_size_rules` and `set_rect` again.
72///
73/// Parameters `x_size` and `y_size` should be passed where this dimension is
74/// fixed and are used e.g. for text wrapping.
75pub fn solve_size_rules<W: Layout + ?Sized>(
76 widget: &mut W,
77 sizer: SizeCx,
78 x_size: Option<i32>,
79 y_size: Option<i32>,
80) {
81 widget.size_rules(sizer.re(), AxisInfo::new(false, y_size));
82 widget.size_rules(sizer.re(), AxisInfo::new(true, x_size));
83}
84
85/// Size solver
86///
87/// This struct is used to solve widget layout, read size constraints and
88/// cache the results until the next solver run.
89///
90/// [`SolveCache::find_constraints`] constructs an instance of this struct,
91/// solving for size constraints.
92///
93/// [`SolveCache::apply_rect`] accepts a [`Rect`], updates constraints as
94/// necessary and sets widget positions within this `rect`.
95pub struct SolveCache {
96 // Technically we don't need to store min and ideal here, but it simplifies
97 // the API for very little real cost.
98 min: Size,
99 ideal: Size,
100 margins: Margins,
101 refresh_rules: bool,
102 last_width: i32,
103}
104
105impl SolveCache {
106 /// Get the minimum size
107 ///
108 /// If `inner_margin` is true, margins are included in the result.
109 pub fn min(&self, inner_margin: bool) -> Size {
110 if inner_margin {
111 self.margins.pad(self.min)
112 } else {
113 self.min
114 }
115 }
116
117 /// Get the ideal size
118 ///
119 /// If `inner_margin` is true, margins are included in the result.
120 pub fn ideal(&self, inner_margin: bool) -> Size {
121 if inner_margin {
122 self.margins.pad(self.ideal)
123 } else {
124 self.ideal
125 }
126 }
127
128 /// Get the margins
129 pub fn margins(&self) -> Margins {
130 self.margins
131 }
132
133 /// Calculate required size of widget
134 ///
135 /// Assumes no explicit alignment.
136 pub fn find_constraints(mut widget: Node<'_>, sizer: SizeCx) -> Self {
137 let start = std::time::Instant::now();
138
139 let w = widget.size_rules(sizer.re(), AxisInfo::new(false, None));
140 let h = widget.size_rules(sizer.re(), AxisInfo::new(true, Some(w.ideal_size())));
141
142 let min = Size(w.min_size(), h.min_size());
143 let ideal = Size(w.ideal_size(), h.ideal_size());
144 let margins = Margins::hv(w.margins(), h.margins());
145
146 log::trace!(
147 target: "kas_perf::layout", "find_constraints: {}μs",
148 start.elapsed().as_micros(),
149 );
150 log::debug!("find_constraints: min={min:?}, ideal={ideal:?}, margins={margins:?}");
151 let refresh_rules = false;
152 let last_width = ideal.0;
153 SolveCache {
154 min,
155 ideal,
156 margins,
157 refresh_rules,
158 last_width,
159 }
160 }
161
162 /// Force updating of size rules
163 ///
164 /// This should be called whenever widget size rules have been changed. It
165 /// forces [`SolveCache::apply_rect`] to recompute these rules when next
166 /// called.
167 pub fn invalidate_rule_cache(&mut self) {
168 self.refresh_rules = true;
169 }
170
171 /// Apply layout solution to a widget
172 ///
173 /// The widget's layout is solved for the given `rect` and assigned.
174 /// If `inner_margin` is true, margins are internal to this `rect`; if not,
175 /// the caller is responsible for handling margins.
176 ///
177 /// If [`SolveCache::invalidate_rule_cache`] was called since rules were
178 /// last calculated then this method will recalculate all rules; otherwise
179 /// it will only do so if necessary (when dimensions do not match those
180 /// last used).
181 pub fn apply_rect(
182 &mut self,
183 mut widget: Node<'_>,
184 cx: &mut ConfigCx,
185 mut rect: Rect,
186 inner_margin: bool,
187 ) {
188 let start = std::time::Instant::now();
189
190 let mut width = rect.size.0;
191 if inner_margin {
192 width -= self.margins.sum_horiz();
193 }
194
195 // We call size_rules not because we want the result, but to allow
196 // internal layout solving.
197 if self.refresh_rules || width != self.last_width {
198 if self.refresh_rules {
199 let w = widget.size_rules(cx.size_cx(), AxisInfo::new(false, None));
200 self.min.0 = w.min_size();
201 self.ideal.0 = w.ideal_size();
202 self.margins.horiz = w.margins();
203 width = rect.size.0 - self.margins.sum_horiz();
204 }
205
206 let h = widget.size_rules(cx.size_cx(), AxisInfo::new(true, Some(width)));
207 self.min.1 = h.min_size();
208 self.ideal.1 = h.ideal_size();
209 self.margins.vert = h.margins();
210 self.last_width = width;
211 }
212
213 if inner_margin {
214 rect.pos += Size::conv((self.margins.horiz.0, self.margins.vert.0));
215 rect.size.0 = width;
216 rect.size.1 -= self.margins.sum_vert();
217 }
218 widget.set_rect(cx, rect, AlignHints::NONE);
219
220 log::trace!(target: "kas_perf::layout", "apply_rect: {}μs", start.elapsed().as_micros());
221 self.refresh_rules = false;
222 }
223
224 /// Print widget heirarchy in the trace log
225 ///
226 /// This is sometimes called after [`Self::apply_rect`].
227 pub fn print_widget_heirarchy(&mut self, widget: &dyn Layout) {
228 let rect = widget.rect();
229 let hier = WidgetHierarchy::new(widget, None);
230 log::trace!(
231 target: "kas_core::layout::hierarchy",
232 "apply_rect: rect={rect:?}:{hier}",
233 );
234 }
235}